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A classic example of Green’s theorem in action is the planimeter, a device that measures
the area enclosed by a curve. Most familiar may be the polar planimeter (see Figure 1), for
which a nice geometrical explanation can be found in the book by Jennings [4] and a direct
constructive proof using Green’s theorem is given by Gatterdam [2]. Other types include the
rolling planimeter, which is particularly suited to a vector calculus course for both ease of use
and simplicity of proof, and radial planimeters that integrate functions plotted on circular
charts (that is, the function is in polar form, r = f(θ)). In this article, we present simple
proofs using Green’s theorem for the rolling and polar planimeters, followed by an analysis of
how to design radial planimeters that calculate a desired integral, such as that of the square
root of a function marked on a circular chart. These proofs are suitable for use in a vector
calculus course and avoid the awkward trigonometric and algebraic calculations required by
proofs like that in [2]. While the proofs in this article are probably not new (though the
author has not seen them elsewhere), they are not readily available, and so these planimeter
proofs are presented with the aim of providing calculus instructors a wonderful supplement
for their courses. Other planimeter proofs can be found on the web. For example, see [6] for
a geometric analysis and [5] for a vector analysis of the polar planimeter, and see [1] for an
explanation of the radial planimeter.

Both rolling and polar planimeters are available in mechanical and electronic versions
for commercial use (a quick web search will reveal several manufacturers). For classroom
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Figure 1. An Ushikata rolling planimeter on the left and a Keuffel and Esser polar planime-
ter on the right (from author’s collection).

demonstrations, relatively inexpensive used polar and radial planimeters are available via
web auction sites and sellers of antique instruments. Unfortunately, rolling planimeters and
square root planimeters tend to be more difficult to procure.

Rolling planimeter

The proofs for the rolling and polar planimeters are quite similar, and we start by treating
the slightly simpler rolling planimeter.

Let C be a positively oriented, piecewise smooth, simple closed curve. Recall that Green’s
theorem states that, given functions P (x, y) and Q(x, y) whose partial derivatives are con-
tinuous on an open set containing the region R enclosed by the curve C, we have∫

C

P dx+Q dy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA.

In particular, if P = 0 and Q = x, we obtain the identity∫
C

x dy =

∫∫
R

dA = Area of the region R. (1)

We will show how (1) forms the vital link between tracing the curve and finding the enclosed
area.

The coordinates (x, y) will represent points on the curve C, while (0, Y ) will describe
the position of the pivot of the rolling planimeter (see Figure 2). It is crucial to recognize
that as the pointer traces out the curve C, the planimeter’s roller can only roll forward and
backward (the roller cannot turn), so it is as though the pivot were fixed to a straight line,
which we make our y-axis. As the planimeter traces out the curve, the roller moves up and
down the y-axis, while the tracer arm rotates on the pivot. Hence the rolling planimeter
is really a convenient form of linear planimeter (as opposed to polar planimeters in which
the pivot traces out a circular arc – see the next section). Also note that the tracer arm’s
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Figure 2. The motion of the tracer arm of a rolling planimeter as it traverses a curve C
counterclockwise. The tracer arm is attached to a roller which rolls along the y-axis. The
tracer arm may pivot where it attaches to the roller at (0, Y ) as the tracer at its opposite
end traces out the curve with coordinates (x, y).

rotation is limited and it may not swing past the roller.
Consider the motion of the tracer as it moves along a small portion of the curve C, from

a point (x, y) counterclockwise to (x + dx, y + dy). The pivot will have a corresponding
displacement from position (0, Y ) to a new position (0, Y + dY ). We wish to determine how
much the measuring wheel on the tracer arm will turn as a result of this small motion, which
can be decomposed into two parts. First roll the pivot along the y-axis from position (0, Y )
to (0, Y + dY ) so that the tracer arm maintains a fixed angle α with the y-axis and the
tracer ends up at (x, y + dY ). Next rotate the tracer arm by an angle dθ (without moving
the roller) so that the tracer ends up at (x + dx, y + dy). During this operation, the wheel
on the tracer arm will roll a distance of sinα dY + a dθ = x

L
dY + a dθ, since only the

component of the motion perpendicular to the tracer arm will result in the wheel turning.
The planimeter returns to its original placement after traversing C and so the total angle of
rotation of the tracer arm will be zero (

∮
C
dθ = 0). Therefore, the total rolling distance of

the tracer arm wheel is

Total wheel roll =
1

L

∮
C

x dY . (2)

We need to relate (2) to the identity in (1). Observe that x2 + (y − Y )2 = L2. Since
the tracer arm cannot rotate past the roller, we have a unique value of Y for each point
(x, y): Y = y −

√
L2 − x2 (given the orientation of the planimeter as shown in Figure 2,

the tracer must always be above the pivot, that is, Y < y must hold). This implies that
dY = dy + x√

L2−x2dx. After applying Green’s theorem to see that
∮
C

x√
L2−x2dx = 0, we find

that

Total wheel roll =
1

L

∮
C

[
x dy +

x2√
L2 − x2

dx
]

=
1

L

∮
C

x dy.
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Hence, the area enclosed by the curve C equals the length L of the tracer arm times the
total wheel roll.

As a practical matter, many planimeters have arms with adjustable lengths as a way to
account for the scale of graph, which could be part of a map or pressure chart. According
to our formula, doubling the length L cuts the vernier reading of the wheel roll in half,
while changing the position of the wheel on the tracer arm (that is, the length a) does not
directly affect the reading (although it likely affects the accuracy as a practical matter). For
example, a tracer arm length of 15 cm on the rolling planimeter shown in Figure 1 leads to
a vernier reading of 1 corresponding to 100 cm2. Extending the arm to 30 cm leads to a
vernier reading of 1 corresponding to 200 cm2.

Polar planimeter

Surprisingly, despite the mechanical differences between rolling and polar planimeters, the
proofs of why they work are quite similar. A proof for the polar planimeter may be con-
structed by replacing the coordinates (0, Y ) with the coordinates (b cosφ, b sinφ) to reflect
the circular motion of the pivot. Consider the motion of the tracer of the polar planimeter
as it moves along a small portion of the curve C, from a point (x, y) counterclockwise to (x+
dx, y+dy). The pivot will have a corresponding displacement from position (b cosφ, b sinφ) to
a new position (b cos(φ+dφ), b sin(φ+dφ)). Since we are considering an infinitesimal displace-
ment, we can linearize the new coordinates to be (b cos(φ)−b sin(φ)dφ, b sin(φ)+b cos(φ)dφ).
As before, we decompose this small motion into two parts. First swing the pivot along the
arc to its new position, keeping the tracer arm parallel to its original orientation, thereby
moving the tracer to (x − b sin(φ)dφ, y + b cos(φ)dφ) (see Figure 3). During this operation,
only the component of the motion perpendicular to the tracer arm will result in the wheel
turning, and so the wheel will rotate a distance equal to the dot product of the displacement
vector with the unit vector orthogonal to the tracer arm (chosen so that tracing the curve
counterclockwise yields a positive value of wheel roll). Next rotate the tracer arm by an angle
dθ (without changing the pivot’s position) so that the tracer ends up at (x+ dx, y+ dy) and
the wheel rolls a distance of a dθ. The wheel will cover a combined distance during these
two small motions of

1

L
〈b sinφ− y, x− b cosφ〉 · 〈−b sinφ, b cosφ〉dφ+ a dθ =

b

L
(x cosφ+ y sinφ− b)dφ+ a dθ.

The planimeter returns to its original placement after traversing C (and cannot do a complete
rotation of 360◦), so the total angle

∮
C
dθ of rotation of the tracer arm will be zero, as will

be the total angle
∮
C
dφ of rotation of the pole arm. Therefore the total rolling distance of

the tracer arm wheel is

Total wheel roll =
b

L

∮
C

(x cosφ+ y sinφ) dφ. (3)

Polar coordinates, not surprisingly, simplify the evaluation of the integral in (3). We first
observe that (x−b cosφ)2+(y−b sinφ)2 = L2 (compare this to the expression x2+(y−Y )2 =
L2 for the rolling or linear planimeter), and then substitute x = r cos θ and y = r sin θ to
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Figure 3. The motion of the tracer arm of a polar planimeter as it traverses a curve C
counterclockwise. The tracer arm is attached via a pivot to an arm with a fixed pole at the
origin. This pivot traces out a circular arc of radius b as the planimeter traces out the curve.

find that

r cos(θ − φ) =
r2 + b2 − L2

2b
and dφ = dθ +

r2 − b2 + L2

r
√

4b2r2 − (r2 + b2 − L2)2
dr.

Rewriting (3) in polar coordinates and applying Green’s theorem with respect to r and θ
yields

Total wheel roll =
b

L

∮
C′

(r cos θ cosφ+ r sin θ sinφ) dφ

=
b

L

∮
C′
r cos(θ − φ) dφ

=
b

L

∮
C′

r2 + b2 − L2

2b

(
dθ +

r2 − b2 + L2

r
√

4b2r2 − (r2 + b2 − L2)2
dr
)

=
b

L

∫∫
R

∂

∂r

[r2 + b2 − L2

2b

]
drdθ

=
1

L

∫∫
R

r drdθ =
1

L
· Area of the region R,

where C ′ is the curve in the rθ-plane corresponding to C (which lies in the xy-plane).
So again we find that the area of the region enclosed by the curve C equals the length L

of the tracer arm times the total wheel roll, using calculations that closely parallel those for
the rolling or linear planimeter, but with the use of polar coordinates.

Next we take a look at a very different family of planimeters that display an amazing
versatility in that they can be designed to integrate a function of the graphed data, for
example, to calculate the mean square root of a graphed function.
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Figure 4. Diagram from the instructions to a Keuffel and Esser radial planimeter (shown
with a circular chart) in the author’s collection. P marks the pivot and T marks the tracer.
The tracer arm AT can slide as well as turn on the pivot.

Radial planimeter

A radial planimeter measures the mean height of a polar graph f(θ), 0 ≤ θ ≤ 2π. It has
a simple design, consisting of a tracer arm with a pivot, a tracer and a measuring wheel
(which is placed near the tracer with axis parallel to the tracer arm). As the tracer follows
the curve, the tracer arm swings on the pivot, which runs along a track inside the tracer
arm, allowing the tracer arm to slide back and forth as needed to trace out the curve (see
Figure 4). The planimeter rotates completely around the pivot after doing a full circuit of
the circular diagram. One can quickly see that a small motion of the tracer arm can be
decomposed into a small angle dθ plus a sliding motion dr. The wheel will turn an amount
f(θ)dθ (dr is perpendicular to the wheel and so does not contribute), and so after a complete

rotation the wheel will record
∫ 2π

0
f(θ)dθ, which, if we divide by 2π, equals the mean value

of f .
During the first half of the 20th century, radial planimeters were used to calculate the

mean flow rate from circular pressure charts [3]. Orifice plate flow meters recorded a pres-
sure difference1 as it varied over a 24-hour period on a circular chart. The mean flow is
proportional to the square root of the pressure, so one could use a radial planimeter to find

the average pressure and then take its square root
√

1
2π

∫ 2π

0
f(θ)dθ to use in calculating the

mean flow. But this isn’t quite right, as the correct quantity is the mean of the square
root of the pressure difference: 1

2π

∫ 2π

0

√
f(θ)dθ. If the function f(θ) varies little over the

period of interest, then these two quantities are nearly the same, and so one can find a good
approximation using a radial planimeter. The proper tool, however, is a planimeter that
integrates the square root of the function, and, in fact, such a planimeter exists!

1Thank you to Alfredo Marquez Claussen for clarifying how flow is measured by an orifice plate flowmeter.
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Figure 5. On the left is a square root planimeter (calculates the mean square root of a
graph on a circular chart). On the right is a planimeter similar in form to the square root
planimeter, but with a very different track. The previous owner did not know the purpose
of this “mystery” planimeter, which motivated the author to derive (5) in order to deduce
its function. The pivot pin is not shown here; it is a simple piece that can be affixed to the
chart’s center and has a small rod that fits into the track and allows the planimeter to slide
back and forth.

Square root planimeters and beyond

One can do even better than to design a planimeter that calculates the mean of the square
root of a function. We will derive a more general formula for a planimeter that calculates
the value of

∫ 2π

0
(g ◦ f)(θ)dθ for a specified function g(r), such as g(r) =

√
r or g(r) = r3/2.

We will assume that we are given the graph of r = f(θ) + a for some positive constant a,
in contrast to the regular radial planimeter for which a = 0. This offset of the graph gives
us some wiggle room that makes design of the desired planimeter possible.

Where the radial planimeter has a straight track, the new design will have a curved track,
described in polar coordinates by β = β(r) for r ≥ a, as shown in Figure 5. The path of the
tracer as it follows the graph of r = f(θ) + a is

c(θ) = (f(θ) + a)〈cos θ, sin θ〉,

and a tangent vector to this path is given by

c′(θ) = (f(θ) + a)〈− sin θ, cos θ〉+ f ′(θ)〈cos θ, sin θ〉.

Let w(θ) = 〈cos(θ + β), sin(θ + β)〉 be the unit vector parallel to the wheel (see Figure
6). Note that the angle β = β(r) is a function of the radial distance from the pivot, which
is β(r) = β(f(θ) + a) for a point on the curve. The wheel roll due to the tracer moving an
infinitesimal distance c′(θ)dθ along the curve is given by

w(θ) · c′(θ)dθ = (f(θ) + a) sin β(f(θ) + a)dθ + f ′(θ) cos β(f(θ) + a)dθ.

We must also account for the return of the tracer to the starting position along the radial
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Figure 6. Diagram for designing a more general planimeter like those shown in Figure 5.
In general, r is the distance from the pivot to a point on the curve.

line θ = 0 if f(2π) 6= f(0). Observe that the wheel makes an angle β(r) with the radial line,
so a small displacement dr results in the wheel rolling a distance cos β(r)dr. Adding these
parts leads to the following expression for the total wheel roll:

Total wheel roll =

∫ 2π

0

(f(θ) + a) sin β(f(θ) + a)dθ

+

∫ 2π

0

f ′(θ) cos β(f(θ) + a)dθ +

∫ f(0)+a

f(2π)+a

cos β(r)dr. (4)

Let G(z) =
∫ z+a
a

cos β(r)dr. We can greatly simplify (4) by observing that∫ 2π

0

f ′(θ) cos β(f(θ) + a)dθ = G(f(2π))−G(f(0))

and ∫ f(0)+a

f(2π)+a

cos β(r)dr = G(f(0))−G(f(2π)).

Then (4) reduces to

Total wheel roll =

∫ 2π

0

(f(θ) + a) sin[β(f(θ) + a)]dθ. (5)

We will use (5) to design the track, that is, to determine the β(r) that yields a de-
sired planimeter function. For example, to obtain a square root planimeter that calculates∫ 2π

0

√
f(θ)dθ, we observe that we need r sin β(r) =

√
r − a, which implies that β(r) =

sin−1
√
r−a
r

. This design matches the track of the square root planimeter shown in Figure 5
with a = 2cm.

We can also use this approach to discover what the “mystery planimeter” shown in Figure
5 does. By comparing its track to the graphs of β(r) corresponding to (g ◦ f)(θ) = f(θ)p
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Figure 7. Graphs of tracks for planimeters that will integrate (g ◦ f)(θ) = f(θ)p, corre-

sponding to β(r) = sin−1 (r−a)p
r

.

for various powers p (see Figure 7), we find that p = 1 yields a match. This planimeter is
an alternate form of the radial planimeter with a = 3cm (the regular radial planimeter has
a straight line track with a = 0). Mystery solved!
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