

Amherst College Department of Mathematics

Math 211

FINAL EXAM

Spring 2014

NAME:

Read This First!

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- You need NOT simplify algebraically complicated answers. However, numerical answers such as $\sin \frac{\pi}{6}$, $\arctan(\sqrt{3})$, $4^{3/2}$, $e^{\ln 4}$, $\ln e^7$, $e^{-\ln 5}$, $e^{3\ln 3}$, or $\cosh(\ln 3)$ should be simplified.
- Please read each question carefully. *Show all of your work* and *justify* all of your answers. (You may use the backs of pages for additional work space.)

Question:	1	2	3	4	5	6	7	8	9	10	11	12	Total
Points:	6	8	8	8	10	8	8	10	8	12	6	8	100
Score:													

Grading - For Administrative Use Only

1. Find the angle between $u = \langle 2, 3, 1 \rangle$ and $v = \langle 4, 1, 2 \rangle$.

- 2. Convert the following integral from rectangular to cylindrical coordinates. **DO NOT INTEGRATE.**

$$\int_0^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-x^2-y^2}^{x^2+y^2} 21xy^2 dz \, dy \, dx$$

- 3. Find the volume of the parallelepiped determined by $u = \langle 2, 2, -4 \rangle$, $v = \langle -2, 0, -2 \rangle$, and [8] $w = \langle 4, 3, -4 \rangle$.
- 4. Find the equation of the plane tangent to the surface

$$z = \ln\left(2x + y\right)$$

at the point (-1, 3).

- 5. Find the volume of the region cut from the solid sphere $\rho \leq 1$ by the half planes $\theta = 0$ and [10] $\theta = \frac{\pi}{6}$ in the **first octant**.
- 6. A function is called 'Harmonic' if $f_{xx} + f_{yy} + f_{zz} = 0$. Show that the function [8]

$$f\left(x, y, z\right) = 7e^{x+2y}\sin\left(z\sqrt{5}\right)$$

is Harmonic.

- 7. Find the centroid of the triangular region cut from the second quadrant by the line y x = 4. [8]
- 8. For each of the following, find the limit or show that the limit does not exist.

(a)
$$\lim_{(x,y)\to(4,0)} \frac{xy-4y}{(x-4)^2+y^2}$$

$$x^2 - 3y^3$$
[5]

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - 3y^2}{\sqrt{x^2 + y^2}}$$
 [5]

9. Find the work done by a force field F = xyi + yzj + xzk from (0,0,0) to (1,1,1) over the path given by $r(t) = ti + t^2j + t^4k$. [8]

[8]

[8]

- 10. Consider the vector field $F = (2xy^4 \cos y)i + (4x^2y^3 + 1 + x\sin y)j$.
 - (a) Show that the vector field is conservative.
 - (b) Find a potential function corresponding to F.
 - (c) Evaluate the integral

$$\int_{C} (2xy^{4} - \cos y) \, dx + (4x^{2}y^{3} + 1 + x\sin y) \, dy$$

where C is a smooth curve from (3, 1) to $\left(2, \frac{\pi}{2}\right)$.

11. Given $f(x,y) = \sqrt{29 - x^2 - y^2}$, sketch the level curves that pass through the points (2, -3, 4)and $(1, 1, 3\sqrt{3})$. Make sure to label your axes and tick marks.

12. Consider the function $f(x, y) = x^2 + 4y^2$.

- (a) Find the directional derivative of f at the point (3, 1) in the direction of the vector (1, -1). [6]
- (b) In what direction is the directional derivative greatest at (3, 1)?

[4]

[4]

[4]

[6]

[2]