
Math 211, Section 01, Spring 2012

Solutions to the Final Exam

1. Find an equation for the line of intersection of the planes 2x− y + 5z = 1 and x− z = 3.
Answer. The planes have normals ~n1 = 〈2,−1, 5〉 and ~n2 = 〈1, 0,−1〉, so the line must be parallel

to their cross product ~v = ~n1 × ~n2 =

∣∣∣∣∣∣
~i ~j ~k
2 −1 5
1 0 −1

∣∣∣∣∣∣ = 〈1, 5 + 2, 1〉 = 〈1, 7, 1〉. To find a point on the

line, plugging the arbitrary choice z = 0 into the second plane gives x = 3, and so the first plane
gives y = 2x+ 5z − 1 = 5. That is, the point (3, 5, 0) is on both planes and hence the line. So the
line is given by ~r(t) = 〈t+ 3, 7t+ 5, t〉.
(Note: there are other correct ways to do this problem.)

2. Let C be the curve in R3 parametrized by ~r(t) = 〈cos t, sin t, t2〉, for 0 ≤ t ≤ π.
2.a. Write down, but do not evaluate, a definite integral giving the arclength of C.

2.b. Compute
∫
C

~F · d~r, where ~F (x, y, z) = 〈yz,−xz, 6z〉.

Answer. (a). We compute ~r ′(t) = 〈− sin t, cos t, 2t〉, and hence

‖~r ′(t)‖ =
√

sin2 t+ cos2 t+ 4t2 =
√

1 + 4t2. So the arclength is
∫ π

0

√
1 + 4t2 dt.

(b).
∫
C

~F · d~r =
∫ π

0

~F (~r(t)) · ~r ′(t) dt =
∫ π

0
〈t2 sin t,−t2 cos t, 6t2〉 · 〈− sin t, cos t, 2t〉 dt

=
∫ π

0
−t2 sin2 t− t2 cos2 t+ 12t3 dt =

∫ π

0
−t2 + 12t3 dt = − t

3

3
+ 3t4

∣∣∣π
0

= 3π4 − π3

3
.

3. Find the maximum and minimum values of the function f(x, y) = 4x2y on the ellipse 4x2 +y2 =
36.
Answer. We use Lagrange Multipliers; let g(x, y) = 4x2 + y2. Setting ∇f = λ∇g gives 8xy = 8λx
and 4x2 = 2λy, along with the original equation 4x2 + y2 = 36.
The first equation rearranges to x(y − λ) = 0, so that either x = 0 or λ = y.
If x = 0, then g = 36 gives y2 = 36, and so y = ±6.
If λ = y, then the second equation gives y2 = 2x2, so that g = 36 gives 3y2 = 36, and hence
y = ±

√
12 = ±2

√
3. Solving for x in x2 = y2/2 gives x = ±

√
6. (And the two ±’s are independent.)

Thus, we have six points of interest: the two points (0,±6), and the four points (±
√

6,±2
√

3).
Plugging into f gives

f(0,±6) = 0, f(±
√

6, 2
√

3) = 48
√

3, f(±
√

6,−2
√

3) = −48
√

3.
Hence, the minimum value is −48

√
3, and the maximum is 48

√
3.

4. Find and classify (as local minimum, local maximum, or saddle point) every critical point of the
function f(x, y) = x2y − 2x2 − 6y2 − 12y.
Answer. We have fx = 2xy− 4x = 2x(y− 2), and fy = x2 − 12y− 12. Solving fx = 0 gives x = 0
or y = 2.
If x = 0, then fy = 0 gives 12y = −12, and hence y = −1. If y = 2, then fy = 0 gives x2 − 36 = 0,
and hence x = ±6. Thus, there are three critical points: (0,−1) and (±6, 2).
To test the critical points, we compute fxx = 2y − 4, fxy = 2x, and fyy = −12.

At (0,−1), we have D =
∣∣∣∣−6 0

0 −12

∣∣∣∣ = 72 > 0, and fxx = −6 < 0, so that f has a local maximum

at (0,−1).



At (±6, 2), we have D =
∣∣∣∣ 0 ±12
±12 −12

∣∣∣∣ = −144 < 0, (note the two ±’s are synchronized), so that f

has a saddle point at both (6, 2) and (−6, 2).

5. Let E be the solid bounded by the paraboloid z = 2x2 + 2y2 and the plane z = 2. Compute∫∫∫
E
z dV .

The paraboloid lies underneath, and the plane above. They intersect when z = 2 and 2x2+2y2 = 2,
i.e., above the circle x2 + y2 = 1. The shadow of the solid E on the xy-plane is the disk enclosed
by this circle, so we use cylindrical coordinates. The integral is∫∫∫

E
z dV =

∫ 2π

0

∫ 1

0

∫ 2

2r2
rz dz dr dθ =

∫ 2π

0
dθ

∫ 1

0

rz2

2

∣∣∣2
z=2r2

dr = 2π
∫ 1

0
2r − 2r5 dr

= 2π
[
r2 − r6

3

]1
0

= 2π
(

1− 1
3

)
=

4π
3

.

6. Find the volume of the solid bounded by the surfaces y = 1− x2, y = 0, z = x, and z = 2.
The solid E lies “inside” (i.e., bounded on the right by) the parabolic cylinder y = 1 − x2. It is
bounded on the left by y = 0 (the xz-plane), below by z = x, and above by z = 2. When crushed
onto the xy-plane, its shadow is the region bounded above by the parabola y = 1 − x2 and below
by the x-axis; these two curves intersect at x = ±1. Thus, the volume is∫∫∫

E
dV =

∫ 1

−1

∫ 1−x2

0

∫ 2

x
dz dy dx =

∫ 1

−1

∫ 1−x2

0
2− x dy dx =

∫ 1

−1
(2− x)(1− x2) dx

=
∫ 1

−1
2− x− 2x2 + x3 dx = 2x− x2

2
− 2

3
x3 +

x4

4

∣∣∣1
−1

=
(

2− 1
2
− 2

3
+

1
4

)
−
(
− 2− 1

2
+

2
3

+
1
4

)
= 4− 4

3
=

8
3

.

7. Let f(x, y) =


5y3 − 2xy
3x2 + y2

if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

7.a. Compute fx(0, 0) and fy(0, 0).
7.b. Prove that f is not continuous at (0, 0).

Answer. (a). fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

0− 0
h

= 0, and

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)
h

= lim
h→0

5h3 − 0
h2

− 0

h
= lim

h→0

5h3

h3
= lim

h→0
5 = 5.

(b). Approaching along the line y = x, we have

lim
x→0

f(x, x) = lim
x→0

5x3 − 2x2

4x2
= lim

x→0

5x− 2
4

= −1
2
6= 0 = f(0, 0),

and therefore f is not continuous at (0, 0).

8. Let C be the boundary of the triangle in the plane with vertices (0, 0), (1, 0), and (0, 3), oriented
counterclockwise, and let ~F (x, y) =

〈
y2 + cos(x2 − 3), 4xy

〉
.

Compute
∫
C

~F · d~r.

Answer. Because it’ll be tedious to parametrize the three legs of the triangle separately, and
because the integrand looks hard, we use Green’s Theorem. We compute



∂Q

∂x
− ∂P

∂y
= 4y − 2y = 2y, and since the triangle lies above the interval [0, 1] on the x-axis, with

hypoteneuse above given by y = 3− 3x, we have
∫
C

~F · d~r =
∫ 1

0

∫ 3−3x

0
2y dy dx

=
∫ 1

0
y2
∣∣∣3−3x

y=0
dx =

∫ 1

0
(3− 3x)2 dx =

∫ 1

0
9− 18x+ 9x2 dx = 9x− 9x2 + 3x3

∣∣∣1
0

= 9− 9 + 3 = 3.

9. Let ~F (x, y) = 〈x− cos(2y), y3 + 2x sin(2y)〉.
9.a. Show that ~F is conservative by finding a potential function for ~F .

9.b. Let C be the curve parametrized by ~r(t) = 〈
√
t2 + 9, et

2−4t〉 for 0 ≤ t ≤ 4.

Compute
∫
C

~F · d~r.

Answer. (a). Solving ∇f = ~F , we have fx = x− cos(2y), so that f(x, y) =
x2

2
− x cos(2y) + g(y),

for some function g(y). But then y3 +2x sin(2y) = fy = 2x sin(2y)+g′(y), so that g′(y) = y3. Thus,

we may choose g to be any antiderivative of y3, such as y4/4. That is, f(x, y) =
x2

2
+
y4

4
−x cos(2y)

is a potential function for ~F ; that is, ∇f = ~F .
(b). Since we have a potential function for ~F , we use the Fundamental Theorem of Line Integrals.
The starting point of C is ~r(0) = 〈3, 1〉, and the ending point is ~r(4) = 〈5, 1〉. Thus,∫
C

~F · d~r = f(5, 1)− f(3, 1) =
(25

2
− 5 cos 2 +

1
4

)
−
(9

2
− 3 cos 2 +

1
4

)
= 8− 2 cos 2.

10. Let f(x, y) be a differentiable function, and suppose that:

fx(−1, 1) = −2 fx(−1, 2) = 7 fx(1, 1) = 3 fx(1, 2) = 4
fy(−1, 1) = 2 fy(−1, 2) = −1 fy(1, 1) = 5 fy(1, 2) = −3.

Let h(s, t) = f(st− 2t, 3s− t). Compute hs(1, 1).
Answer. Write z = h(s, t) = f(x, y), where x = st− 2t, and y = 3s− t.

By the Chain Rule, we have hs(s, t) =
∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
= fx(x, y) · t+ fy(x, y) · 3.

When (s, t) = (1, 1), we have (x, y) = (1− 2, 3− 1) = (−1, 2), and so
hs(s, t) = fx(−1, 2) · 1 + fy(−1, 2) · 3 = 7 · 1 + (−1) · 3 = 4.

11. Let S be the closed surface consisting of the upper half of the sphere x2+y2+z2 = 4 with z ≥ 0,
together with the disk x2+y2 ≤ 4 in the xy-plane, oriented outward. Let ~G(x, y, z) = 〈xz, 3yz, x2y〉.
Use the Divergence Theorem to compute the flux

∫∫
S

~G · d~S of ~G through S.

Answer. We compute div ~G = z + 3z + 0 = 4z. Let E be the solid hemisphere (of radius 2)

enclosed by S. Then
∫∫

S

~G · d~S =
∫∫∫

E
4z dV =

∫ 2π

0

∫ π/2

0

∫ 2

0
(4ρ cosφ)ρ2 sinφdρ dφ dθ

=
(∫ 2π

0
dθ
)(∫ π/2

0
cosφ sinφdφ

)(∫ 2

0
4ρ3 dρ

)
= 2π

(1
2

sin2 φ
∣∣∣π/2
0

)(
ρ4
∣∣∣2
0

)
= π · 1 · 16 = 16π.

12. Let S be the portion of the surface z = 4 − x2 − y2 in the first octant, and let C be the
boundary of S, oriented clockwise when viewed from above. (Note that C consists of three arcs,

one in each of the three coordinate planes.) Use Stokes’ Theorem to compute
∫
C

~F · d~r, where

~F (x, y, z) = 〈x5, xy, sin z〉.



Answer. We compute curl ~F =

∣∣∣∣∣∣
~i ~j ~k
∂x ∂y ∂z
x5 xy sin z

∣∣∣∣∣∣ = 〈0, 0, y〉. We note that the shadow of S on the xy-

plane is a quarter-disk, which suggests using a parametrization inspired by cylindrical coordinates.
So we use the parametrization ~r(r, θ) = 〈r cos θ, r sin θ, 4− r2〉, for 0 ≤ θ ≤ π

2
and 0 ≤ r ≤ 2.

Thus, ~rr = 〈cos θ, sin θ,−2r〉, and ~rθ = 〈−r sin θ, r cos θ, 0〉. Their cross product is ~rr × ~rθ =
〈—,—, r〉, where I haven’t bothered to compute the x- and y-entries, given that the curl I’ll be
dot-producting with has zeros in those entries. However, the z-entry is positive, which is the
wrong direction according to the right-hand rule and the clockwise orientation of C. So we use
~rθ × ~rr = 〈—,—,−r〉. Hence, since y = r sin θ (from the z-entry of curl ~F ), we have∫
C

~F · d~r =
∫∫

S
curl ~F · d~S =

∫ π/2

0

∫ 2

0
−r2 sin θ dr dθ = −

(∫ π/2

0
sin θ dθ

)(∫ 2

0
r2 dr

)
= −

(
− cos θ

∣∣∣π/2
0

)(r3
3

∣∣∣2
0

)
= −(−0 + 1)

(8
3
− 0
)

= −8
3

.

OPTIONAL BONUS A. Let C be the portion of the graph of y = sinx from the point (0, 0) to

the point (π, 0). Compute
∫
C

(9x2y2 + y) dx+ (6x3y − sin y) dy.

Answer. Write ~F = 〈P,Q〉, where P = 9x2y2 + y and Q = 6x3y − sin y. Let C ′ be the straight
line segment from (π, 0) to (0, 0), i.e., running right-to-left along the x-axis. Together, C and C ′

enclose a region D, the region under the first hump of y = sinx above the x-axis. (But note that
the orientation of C + C ′ is negative.)
Parametrizing C ′ by ~r(t) = 〈π− t, 0〉 for 0 ≤ t ≤ π, we have ~r ′(t) = 〈−1, 0〉, but because P (x, 0) =

Q(x, 0) = 0 for all x ∈ R, we get
∫
C′

~F · d~r =
∫ π

0

~F (π − t, 0) · 〈−1, 0〉 dt = 0.

Thus, by Green’s Theorem, recalling the negative orientation, we have∫
C

~F · d~r =
∫
C

~F · d~r +
∫
C′

~F · d~r = −
∫∫

D

∂Q

∂x
− ∂P

∂y
dA = −

∫∫
D

18x2y − 18x2y − 1 dA

=
∫∫

D
1 dA =

∫ π

0

∫ sinx

0
dy dx =

∫ π

0
sinx dx = cosx

∣∣∣π
0

= 1− (−1) = 2.

OPTIONAL BONUS B. Let (x0, y0) and (x1, y1) be two points in the plane for which x0, x1 > 0
and x2

0 + y2
0 = x2

1 + y2
1 = 1. Let C0 be the straight line segment from (x0, y0) to (0,−1), and let C1

be the straight line segment from (x1, y1) to (0,−1). Prove that
∫
C0

ds√
y0 − y

=
∫
C1

ds√
y1 − y

.

Proof. Fix i = 0 or i = 1, and parametrize Ci by ~r(t) = 〈xi(1 − t), yi − (yi + 1)t〉, for 0 ≤ t ≤ 1.
Then ~r ′(t) = 〈−xi,−(yi + 1)〉, and hence

‖~r ′(t)‖ =
√
x2
i + (yi + 1)2 =

√
x2
i + y2

i + 2yi + 1 =
√

2yi + 2,
where we have used the fact that x2

i + y2
i = 1. So∫

Ci

ds√
yi − y

=
∫ 1

0

√
2yi + 2√

yi − [yi − (yi + 1)t]
dt =

∫ 1

0

√
2
√
yi + 1√

(yi + 1)t
dt =

∫ 1

0

√
2√
t
dt,

which, even though it’s an improper integral, is clearly independent of i. (In fact, the value is 2
√

2.)

OPTIONAL BONUS C. There are five nations that are permanent members of the United
Nations Security Council. Name them.
Answer. USA, Russia, Britain, France, China. (I.e., the victors in World War II.)


