Math 211 Curvature Practice

Formulas for curvature.

If **r** is a vector-valued function defining a smooth space curve C, and if $\mathbf{r}'(t)$ is not zero and if $\mathbf{r}''(t)$ exists, then the curvature κ of C satisfies

•
$$\kappa = \kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}$$

•
$$\kappa = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}.$$

- 1. Consider the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b > 0.
 - a. Sketch this ellipse.
 - b. Find a parameterization $\mathbf{r}(t)$ of this ellipse.
 - c. Use of one of the two formulas above to find the curvature of this ellipse.
 - d. At what points is the curvature of the ellipse greatest and at what points is it smallest? Why does this make sense?

- 2. Derivation of the second curvature formula:
 - a. Explain why $\frac{ds}{dt} = \|\mathbf{r}'(t)\|$, where s is arc length.
 - b. Use part a and the definition of $\mathbf{T}(t)$ to derive $\mathbf{r}'(t) = \frac{ds}{dt}\mathbf{T}(t)$.
 - c. Take a derivative of the equation in part b, using product rule.
 - d. Combine parts b and c to derive $\mathbf{r}'(t) \times \mathbf{r}''(t) = \left(\frac{ds}{dt}\right)^2 \mathbf{T}(t) \times \mathbf{T}'(t)$.
 - e. Show that $\|\mathbf{T}(t) \times \mathbf{T}'(t)\| = \|\mathbf{T}'(t)\|$.
 - f. Use the first curvature formula and the parts above to derive the second formula.