1. Verify Stokes' Theorem for the vector field \(\mathbf{F}(x, y, z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k} \), where \(S \) is the part of the paraboloid \(z = 1 - x^2 - y^2 \) that lies above the \(xy \)-plane and has upward orientation. That is, calculate both the line integral of \(\mathbf{F} \) around the boundary of \(S \) and the surface integral of curl \(\mathbf{F} \) on \(S \).
2. Verify the Divergence Theorem for the vector field \(\mathbf{F}(x, y, z) = x \, \mathbf{i} + y \, \mathbf{j} + z \, \mathbf{k} \), where \(S \) is the unit sphere \(x^2 + y^2 + z^2 = 1 \). That is, calculate both the surface integral of \(\mathbf{F} \) on \(S \) and the triple integral of \(\text{div} \, \mathbf{F} \) over the interior of \(S \).