Spring 2013 Math 272 Exam 2 Review Sheet

The exam will be in class on Wednesday, April 3, and will cover Sections 3.1-4.4.

You will not be allowed use of a calculator or any other device other than your pencil or pen and some scratch paper. Notes are also not allowed. In kindness to your fellow test-takers, please turn off all cell phones and anything else that might beep or be a distraction.

Important topics:

- Determinants
- Eigenvalues and eigenvectors
- Application to matrix powers
- Vector spaces and subspaces (of vectors, matrices, and polynomials)
- Span
- Linear independence
- Basis

If you have questions on certain topics or want more practice on exam-like problems, please feel free to stop by my office.

Chapter 3 review (p227): 4, 7a, 8a-f, 10, 12, 18, 19, 20

Chapter 4 review (p316): 3, 5, 6, 8, 9, 13, 15, 16, 20, 21, 22, 27

Extra review problems:

- 1. Prove that $|\mathbf{A}^{-1}|=1/|\mathbf{A}|$ for all invertible matrices \mathbf{A} .
- 2. Prove that if λ is an eigenvalue of a matrix **A** with corresponding eigenvector **v**, then λ^m is an eigenvalue of **A**^m with corresponding eigenvector **v**.
- 3. Prove that if **A** is nilpotent (\mathbf{A}^m =0 for some positive integer m), then 0 is an eigenvalue of **A**. In fact, show that 0 is the *only* eigenvalue of **A**.
- 4. Let \mathbf{A} be a 2x2 matrix with eigensystem $\left\{ \left\{ \lambda_1 = -\frac{1}{2}, \mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, \left\{ \lambda_2 = 1, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\} \right\}$ and let $\mathbf{x}_0 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$. Find the limit of $\mathbf{x}_k = \mathbf{A}^k \mathbf{x}_0$ as $k \to \infty$.

- 5. Suppose a 2x2 matrix **A** has eigensystem $\left\{ \left\{ \lambda_1 = 1, \mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right\}, \left\{ \lambda_2 = \frac{2}{3}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} \right\}$. Determine $\lim_{k \to \infty} \mathbf{A}^k \mathbf{x}_0$ if $\mathbf{x}_0 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$.
- 6. Find a basis for the vector space $\{p(x) = a_0 + a_1x + a_2x^2 : p(1) = 0\}$. What is the dimension of this space?
- 7. Find a basis for the space $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a+b-c=0 \text{ and } b+2d=0 \right\}$. What is the dimension of this space?
- 8. Prove that $B = \{1 + x, x + x^2, 1 x\}$ is a basis for \mathbf{P}_2 . Express $2 + x + x^2$ as a linear combination of the vectors in this basis.
- 9. Determine if the set *S* is a subspace of the vector space *V*. If it is, then find a basis for *S*. If it is not, then explain why not.

(a)
$$S = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix} : a, b \text{ are real} \right\}$$
 for $V = \text{set of all } 2x2 \text{ matrices with real entries}$

(b)
$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x + z = 1 \right\}$$
 for $V = \mathbb{R}^3$

Partial solutions

- 1. Let **A** be an invertible matrix, so $AA^{-1}=I$. Then $1=|I|=|AA^{-1}|=|A||A^{-1}|$, so $|A^{-1}|=1/|A|$. Note that we can divide by |A| since invertible matrices are nonsingular $(|A| \neq 0)$.
- 2. Suppose $\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$. We will prove that $\mathbf{A}^m\mathbf{v}=\lambda^m\mathbf{v}$ for any positive integer m by induction. The base case is m=1, and we already know $\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$. Suppose $\mathbf{A}^m\mathbf{v}=\lambda^m\mathbf{v}$ for some positive integer m. Multiply both sides of this equation by A to obtain $\mathbf{A}^{m+1}\mathbf{v}=\lambda^m\mathbf{A}\mathbf{v}=\lambda^m\lambda\mathbf{v}=\lambda^{m+1}\mathbf{v}$. Hence the statement is also true for m+1. Therefore, by induction the statement is true for all positive integers m.

- 3. Suppose $A^m=0$ for some positive integer m. Then $|A|^m=|A^m|=0$, so |A-0I|=|A|=0. This says that $\lambda=0$ satisfies the characteristic equation of A, so is an eigenvalue of A. Now suppose that λ is any eigenvalue of A. For some nonzero vector \mathbf{v} , $A\mathbf{v}=\lambda\mathbf{v}$. From #2, $A^m\mathbf{v}=\lambda^m\mathbf{v}$. But $A^m=0$, so $\lambda^m\mathbf{v}=A^m\mathbf{v}=0$. We know \mathbf{v} is nonzero, so it must be that $\lambda=0$. Hence $\lambda=0$ is the only eigenvalue of A.
- 4. Write \mathbf{x}_0 as a linear combination of eigenvectors then multiply by \mathbf{A}^k and simplify using eigenvalues. The limit is $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$.
- 5. The limit is $\begin{bmatrix} 3/4 \\ 1/4 \end{bmatrix}$.
- 6. A basis is $B=\{x-1, x^2-1\}$, so dimension is 2.
- 7. A basis is $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & -2 \\ 0 & 1 \end{bmatrix}$, so dimension is 2.
- 8. To prove the set is a basis, we first note that it contains 3 vectors and \mathbf{P}_2 is a 3 dimensional space, so we only need to prove it spans \mathbf{P}_2 or that it is linearly independent. To do the latter, show that the only linear combination of the 3 polynomials that equals zero has all 3 coefficients equal to zero. $2+x+x^2$ equals the sum of the 3 basis polynomials.
- 9. (a) Yes, this is a subspace; (b) Not a subspace since doesn't contain zero vector.

Please email me if you find any errors in the solutions. Thank you!

Practice exam:

1. Compute $\begin{vmatrix} 1 & 0 & 0 \\ p & 1 & s \\ q & r & 2 \end{vmatrix}$. For what values of p, q, r, and s is the following set a basis for

$$\mathbf{R}^3: \quad \left\{ \begin{bmatrix} 1 \\ p \\ q \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ r \end{bmatrix}, \begin{bmatrix} 0 \\ s \\ 2 \end{bmatrix} \right\}$$

- 2. Prove that $B = \{1 x, 1 + x, x x^2\}$ is a basis for \mathbf{P}_2 . Express $3x^2 + x$ as a linear combination of the vectors in this basis.
- 3. Find a basis for the space $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a+3b=0 \text{ and } c+3d=0 \right\}$. What is the dimension of this space?
- 4. Suppose *V* is a vector space and {**u**,**v**,**w**} is a basis for *V*. Prove that {**u**,**u**+**v**,**u**+**v**+**w**} is also a basis for *V*.
- 5. Prove that $\lambda=0$ is an eigenvalue of a matrix **A** if and only if **A** is singular.