Math 272 Practice Problems Involving Linear Transformations

- 1. Suppose that $T: V \to W$ is a linear transformation. Prove that T is one-to-one if and only if the only solution to $T(\mathbf{v}) = \mathbf{0}$ is $\mathbf{v} = \mathbf{0}$.
- 2. For each of the following transformations, determine the kernel and the range and whether the transformation is one-to-one and/or onto.
 - (a) $T: \mathbf{R}^2 \to \mathbf{R}^2$, T(x, y) = (2x 3y, 5x + y).
 - (b) $T: \mathbf{R}^2 \to \mathbf{R}^2$, T(x, y) = (8x + 4y, 2x + y).
 - (c) $T: \mathbf{R}^3 \to \mathbf{R}^2$, T(x, y, z) = (x y, y z).
 - (d) $T : \mathbf{R}^2 \to \mathbf{R}^3$, T(x, y) = (2x 3y, 5x + y, y).
- 3. Suppose that a linear transformation $T : \mathbf{R}^n \to \mathbf{R}^n$ is defined by $T\mathbf{v} = \mathbf{A}\mathbf{v}$, where \mathbf{A} is an $n \times n$ matrix with det $\mathbf{A}=0$. Can T be one-to-one? Can T be onto? Explain.
- 4. If **A** is an $m \times n$ matrix and the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has at least one solution for every vector **b** in \mathbf{R}^m , what is the range of $T_{\mathbf{A}} : \mathbf{R}^n \to \mathbf{R}^m$?
- 5. Let T be a transformation from the set of polynomials of degree 2 or less to \mathbf{R}^2 defined by T(p) = (p(1), p(-1)). What are the range and kernel of T? Is T one-to-one? Is it onto?
- 6. If $T: V \to W$ is a linear transformation that is both one-to-one and onto, then for each vector \mathbf{w} in W there is a unique vector \mathbf{v} in V such that $T(\mathbf{v}) = \mathbf{w}$. Prove that the inverse transformation $T^{-1}: W \to V$ defined by $T^{-1}(\mathbf{w}) = \mathbf{v}$ is linear.
- 7. Let V be a vector space and let $\mathbf{v}_1, \mathbf{v}_2 \in V$. This gives subspaces $\text{Span}\{\mathbf{v}_1\}$ and $\text{Span}\{\mathbf{v}_2\}$ of V. Prove that $\text{Span}\{\mathbf{v}_1\} + \text{Span}\{\mathbf{v}_2\} = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$, where

$$\operatorname{Span}\{\mathbf{v}_1\} + \operatorname{Span}\{\mathbf{v}_2\} = \{\mathbf{u} + \mathbf{v} | \mathbf{u} \in \operatorname{Span}\{\mathbf{v}_1\}, \mathbf{v} \in \operatorname{Span}\{\mathbf{v}_2\}\}.$$

- 8. Let V be a vector space and assume that $\mathbf{v}_1, \mathbf{v}_2 \in V$ are linearly independent. Given $\mathbf{v}_3 \in V$, prove that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent if and only if $\mathbf{v}_3 \in \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Prove this directly from the definitions.
- 9. Let V be a vector space and assume that $\mathbf{v}, \mathbf{w} \in V$. Prove that $\text{Span}\{\mathbf{v}, \mathbf{w}\} = \text{Span}\{\mathbf{v} + \mathbf{w}, \mathbf{v} \mathbf{w}\}$.

- 10. Prove that the kernel of a linear transformation $T: V \to W$ is a subspace of V. You should prove this directly from the appropriate definitions.
- 11. Prove that the range of a linear transformation $T: V \to W$ is a subspace of W. You should prove this directly from the appropriate definitions.
- 12. Let $T : V \to W$ be linear and one-to-one. Suppose $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ are linearly independent. Prove that $T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)$ are linearly independent. You should prove this directly from the appropriate definitions.
- 13. Let $T: V \to W$ be linear and let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be a basis of V. Also assume that $T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)$ are linearly independent. Prove that T is one-to-one. You should prove this directly from the appropriate definitions.
- 14. Let $T: V \to W$ and $S: W \to Z$ be linear maps between vector spaces. Prove that the composition $S \circ T: V \to Z$ is linear. You should prove this directly from the appropriate definitions.
- 15. Let $T: V \to W$ be linear and onto. Also assume that $\mathbf{v}_1, \dots, \mathbf{v}_n$ span V. Prove that $T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)$ span W. You should prove this directly from the appropriate definitions.
- 16. Let $T: V \to W$ be linear. Also assume that $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ have the property that $T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)$ span W. Prove that T is onto. You should prove this directly from the appropriate definitions.

Selected Solutions

First suppose T is one-to-one, so T(u) = T(v) implies u = v. For any linear transformation, T(0) = 0. If T(u) = 0, then T(v) = T(0), so we must have v = 0.
Now suppose the only solution to T(v) = 0 is v = 0. If T(u) = T(v), then T(u-v) = 0 (using linearity of T) and so u - v = 0 (using the assumption), that is, u = v. This

2. (a) range(T)= \mathbb{R}^2 , ker(T)={**0**}. T is both one-to-one and onto (so invertible).

- (b) $\operatorname{range}(T) = \operatorname{Span}\{[4, 1]\}, \ker(T) = \operatorname{Span}\{[-1, 2]\}.$ T is neither one-to-one nor onto.
- (c) range(T)= \mathbb{R}^2 , ker(T)=Span{[1, 1, 1]}. T is onto but not one-to-one.
- (d) $\operatorname{range}(T) = \operatorname{Span}\{[2, 5, 0], [-3, 1, 1]\}, \operatorname{ker}(T) = \{\mathbf{0}\}.$ T is one-to-one but not onto.
- 3. Tv = Av where |A| = 0 implies that T is singular so neither one-to-one nor onto. In particular, the kernel of T and the null space of A contain more than the zero vector, so T is not one-to-one. Also, the columns of A must be linearly dependent since |A| = 0, so the n columns do not span \mathbb{R}^n , implying that range $(T)=\operatorname{col}(A)$ is not all of \mathbb{R}^n and T cannot be onto.
- 4. The range of T_A must be \mathbb{R}^m since for every $b \in \mathbb{R}^m$ we can find $x \in \mathbb{R}^n$ such that Ax = b.
- 5. $T(a_2x^2 + a_1x + a_0) = (a_2 + a_1 + a_0, a_2 a_1 + a_0)$. The range of T is all of \mathbb{R}^2 , and the kernel of T is $\text{Span}\{x^2 1\}$. T is not one-to-one, but it is onto.
- 6. Take any $w_1, w_2 \in W$ and scalar c. Let $v_1 = T^{-1}(w_1)$ and $v_2 = T^{-1}(w_2)$. Using the linearity of T and that $T^{-1}(T(v)) = v$ for all $v \in V$,

$$T^{-1}(cw_1 + w_2) = T^{-1}(cT(v_1) + T(v_2))$$

= $T^{-1}(T(cv_1 + v_2))$
= $cv_1 + v_2$
= $c T^{-1}(T(v_1)) + T^{-1}(T(v_2))$
= $c T^{-1}(w_1) + T^{-1}(w_2).$

Therefore T^{-1} is linear.

implies that T is one-to-one.

7. First take any $u \in \text{Span}\{\mathbf{v_1}\} + \text{Span}\{\mathbf{v_2}\}$, so we can write $u = u_1 + u_2$ for some vectors $u_1 \in \text{Span}\{\mathbf{v_1}\}$ and $u_2 \in \text{Span}\{\mathbf{v_2}\}$. We can write $u_1 = c_1v_1$ and $u_2 = c_2v_2$ for some scalars c_1 and c_2 , so $u = c_1v_1 + c_1v_2 \in \text{Span}\{\mathbf{v_1}, \mathbf{v_2}\}$. Therefore $\text{Span}\{\mathbf{v_1}\} + \text{Span}\{\mathbf{v_2}\} \subseteq \text{Span}\{\mathbf{v_1}, \mathbf{v_2}\}$.

Now take any $u \in \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$, so $u = c_1v_1 + c_1v_2$ for some scalars c_1 and c_2 . Let $u_1 = c_1v_1 \in \text{Span}\{\mathbf{v}_1\}$ and $u_2 = c_2v_2 \in \text{Span}\{\mathbf{v}_2\}$. Then $u = u_1 + u_2 \in \text{Span}\{\mathbf{v}_1\} + \text{Span}\{\mathbf{v}_2\}$. Therefore $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2\} \subseteq \text{Span}\{\mathbf{v}_1\} + \text{Span}\{\mathbf{v}_2\}$.

We conclude that $\operatorname{Span}\{\mathbf{v_1}\} + \operatorname{Span}\{\mathbf{v_2}\} = \operatorname{Span}\{\mathbf{v_1}, \mathbf{v_2}\}.$