Math 284: Introduction to Root-Finding

If you are new to working with MATLAB-like software, I encourage you to work
through tutorial at http://www.cyclismo.org/tutorial/matlab/. We will also
build skills as we go along, learning by imitating code in class and from the text
book. You should also work through the MATLAB examples that follow each section
in the textbook as another great way to get some guided help. Always let me know if
you have any questions as you go along! I'm happy to help both during class and in
office hours (and via email for simpler questions), to make your computing experience
enhance the course and enable exploration, which is what makes the subject fun.
Today let’s try out some of the root-finding methods, as a way of learning some
coding as well as exploring those methods. If you haven’t done much coding before,
no worries—work through the examples to see what kinds of things can be done and
start to get a feel for how the program works, but I certainly don’t expect everyone

to start whipping up for-loops with fancy index finding techniques.

Bisection and brackets

The simplest method conceptually is to bracket a root, that is, find an interval
containing the root. We compute the function at each end of the bracket and at the
middle to see where a sign change occurs, then update the bracket to the left or right
half, according to where the sign change happened. Repeat until desired accuracy is
reached, for instance, the first 12 decimals places are no longer changing.

To create a bracket for seeking the square root of, say, 5:

format long
bracket=[2 2.5 3];
bracket. 2-5

You should see the change in sign on the left half, so we proceed by updating the
bracket to [2 2.25 2.5] and repeat a few times. This process gets tedious repeating
by hand in the command line, so let’s be more efficient in automating it.

Open a new script in the editor and type clear or clear all at the top. Unless

you're creating a function script, clearing the memory is generally a good idea to



avoid bugs due to previously stored values interfering with new computations. Save
the script in some suitable folder, ensuring the name ends in .m. Now type in the
following loop, which runs the process 10 times (or however many you specify), by

identifying where the sign changes:

bracket=[2 2.5 3];

for count=1:10

ind=find(abs(diff (sign(bracket.~2-5)))>0);

bracket=[bracket (ind) (bracket(ind)+bracket(ind+1))/2 bracket(ind+1)];

end

If you are working in FreeMat, the sign function is not built in. To fix this,
create a new script called sign.m saved in the same folder with your root-finding

script, and type in the following two lines:

function s=sign(x)
s=(2%(x>0)-1) . *(x7=0) ;

We can make this code a bit more elegant by defining a function to evaluate the

bracket values:

f=inline(’x.72-5’);

bracket=[2 2.5 3];

for count=1:10

ind=find(abs(diff (sign(f (bracket))))>0);

bracket=[bracket(ind) (bracket(ind)+bracket(ind+1))/2 bracket(ind+1)];

end

One further nice update would be to have the loop itself determine how long
to run, rather having to specify a particular number of repetitions. Let’s use the
condition that we repeat until the x-value in the middle of the bracket yields |f(z)| <
1078, We fix a max number of repetitions for safety’s sake, to avoid infinite loops.
The counter will also let you see how many repetitions it took to reach the desired

condition.



f=inline(’x.72-57);

bracket=[2 2.5 3];

count=0;

while abs(f(bracket(2)))>1e-8 && count<100
ind=find(abs(diff (sign(f (bracket))))>0);

bracket=[bracket (ind) (bracket(ind)+bracket(ind+1))/2 bracket(ind+1)];
count=count+1;

end

You can simply type bracket and count in the command window to check the
results. If you want to get fancy, you can have the script output the results in a

formatted manner:

disp([’Estimated value: °’ num2str(bracket(2),’%0.12f°)])
disp([’ Actual value: °’> num2str(sqrt(c),’%0.12f°)])
disp([’ Iterations: °’ num2str(count)])

An iterative method

Now let’s try implementing Heron’s rule for finding the square root of ¢, which
involves rewriting the equation 22 — ¢ = 0 to the form z = J(z + <) (check that
these are equivalent). We'll use ¢ = 5 again as an example, but you should try out

different numbers to explore the method’s performance.

g=inline (’ (x+5/x)/2’);
x=1;

x=g(x)

To iterate multiple times without having to enter x=g(x) over and over, you can

do a for-loop:

x=1;
for count=1:5
x=g(x);

end



Or a while-loop to automate the iterations until a desired condition is met:

x=1;

count=0;

while abs(f(x))>1e-8 && count<100
x=g(x);

count=count+1;

end

How do the methods compare? Which seems to require fewer repetitions to reach

the desired accuracy? Which seems like a more elegant method to implement?



