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Ingredients

Given

Seven American Eagle
half-ounce gold coins, which
weigh 16.966 grams each.
But one may be counterfeit...

An electronic balance.

How can we find the bad coin with
the fewest weighings?
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Pooling Design Approach

Label the coins with numbers
1 through 7.

For the first weighing place
coins 1, 3, 5, and 7 on the
scale.

For the second weighing use
coins 2, 3, 6, and 7.

For the third weighing use
coins 4, 5, 6, and 7.
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Combinatorial Group Test

Φ =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1



(Binary encoding)

Label the coins with numbers
1 through 7.

For the first weighing place
coins 1, 3, 5, and 7 on the
scale.

For the second weighing use
coins 2, 3, 6, and 7.

For the third weighing use
coins 4, 5, 6, and 7.
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Combinatorial Group Test

Φ =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1



(Binary encoding)

Pattern of weights that
deviate from the expected
value reveals the bad coin:

If only the 1st weighing is
“off,” then coin 1 is the
counterfeit.

If both the 1st and 2nd
weighings are “off,” then coin
3 is the counterfeit.
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General strategy

If there are k ≥ 2 bad coins (of
unknown weights) the problem
gets a lot harder.

We need a general strategy: how
should we choose the subsets?

Randomly!
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Random Subsets

Suppose we now have 100 coins. Number them 1 to 100.

Choose a random subset where each coin is included with
probability 1

2 (flip each coin–if heads, put it in the subset; if
tails, leave it out).

Weigh the subset and record.

Repeat the previous two steps a total of n times, say, n = 25.

Claim: If there are only a few bad coins (say k ≤ 3) and we weigh
n = 25 subsets, we almost certainly have enough information to
identify the bad ones.
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Random Subsets

Let Xi denote the true DEVIATION of the ith coin’s weight
from nominal (16.966 grams).

We expect Xi = 0 for most i .

Suppose the coins in the first random subset have indices
i = i1, i2, . . . , im (m ≈ 50), and this subset weighs a1 grams.
Then

Xi1 + Xi2 + · · ·+ Xim = a1 − 16.966m.

A similar equation holds for each of the other random subsets
that we choose.
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Random Subsets

Let xi be our estimate of the true value Xi .

We end up with n = 25 linear equations and N = 100 unknowns
(the mass deviations Xi ), of the form

Φx = b.

Φ is the sensing matrix, a 0− 1 matrix with Φij = 1 if the jth coin
was included in the ith subset, and

bj is the mass of the jth subset minus 16.966 times the number of
coins in the subset.
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Random Subsets Example

For example, with N = 10 coins and n = 3 weighings we might
have

Φ =

 1 0 0 1 1 0 1 0 0 0
0 0 1 1 1 1 0 1 0 0
0 1 1 1 1 0 0 0 1 1


if the first weighing involves coins 1, 4, 5, 7, the second involves
coins 3, 4, 5, 6, 8, the third involves coins 2, 3, 4, 5, 9, 10.
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Random Subsets Example

In the coin problem with N = 100, suppose that the true values are
X13 = −0.3,X37 = 0.44, and X71 = −0.33, and all other Xi = 0
(but we don’t know this – the goal is to deduce this information).

To estimate the coin masses, we choose 25 random subsets, each
of size about 50, and weigh each subset. We obtain a system

Φx = b.

The matrix Φ is 25 rows by 100 columns—there will be at least 75
free variables. Solving for the xi in any meaningful way looks
hopeless.
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Minimum `2 Norm Solution

A traditional approach to “solving” a consistent under determined
system of equations Mx = b is to choose that (unique) vector x∗

with the properties that

1 Mx∗ = b (x∗ actually satisfies the equations);

2 x∗ has minimum `2 norm, that is, if x∗∗ 6= x∗ satisfies
Mx∗∗ = b then ‖x∗‖2 < ‖x∗∗‖2 where

‖x‖2 =

(∑
i

|xi |2
)1/2

is the usual Euclidean norm.
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Minimum `2 Norm Solution

Computing the `2 minimum solution is a standard calculus/matrix
algebra problem.

In the present case we find
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Minimum `2 Norm Solution

Geometric intuition:

 

 

{x : Φx = b}
{x : ‖x‖0 = 1}
{x : ‖x‖2 = c}

The point of tangency will usually have many nonzero
components, so this approach rarely leads to a sparse solution.
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Minimum `0 Norm Solution

Since we suspect the solution X is sparse we really ought to seek a
vector x such that

Φx = b and

x has as few nonzero components as possible, that is, x
minimizes the quantity

‖x‖0 = #{xi : xi 6= 0}

Unfortunately this optimization problem is too difficult to solve in
any practical way.
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Brute Force `0 Solution

An expensive strategy for finding a sparse solution to Φx = b (Φ
dimensions n × N):

Look for a 1-sparse solution (try x = (0, . . . , 0, xi , 0, . . . , 0) for
each i , need N linear solves). If that doesn’t work

Try 2-sparse solutions x = (0, xi1 , 0, xi2 , 0), for each (i1, i2)
pair, need N(N − 1)/2 linear solves. If that doesn’t work

Try 3-sparse solutions, 4-sparse, k-sparse, etc.

If N and k are of any significant size, this is completely hopeless!
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Minimum `1 Norm Solution

A “compromise”: Seek an x that satisfies Φx = b and minimizes
the `1 norm

‖x‖1 =
N∑
i=1

|xi |.

This might look hard since |x | isn’t differentiable, but it can be
converted into a standard “easy” linear programming problem.
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Minimum `1 Norm Solution
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The `1 minimization recovers X exactly!
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Probability of `1 Success

The more weighings we do (for any fixed number of defective
coins) the better chance of success `1 minimization has.
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Main Points of This Talk

If x∗ is a sparse (mostly zero) vector, Φ a random matrix, and
Φx∗ = b then x∗ is almost certainly the only sparse solution
to Φx = b, and

With high probability, minimizing ‖x‖1 subject to Φx = b will
recover x = x∗ exactly.
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Bit of History

The idea of recovering sparse signals using `1 minimization
appeared in the mid 1980s, in signal processing and inverse
problems, and were extended by Donoho et al. around 2002.

A more comprehensive framework was developed around 2006
with landmark papers by Candes, Romberg, Donoho, Tao.

Compressed sensing is now a very hot area in mathematics,
statistics, computer science, and engineering.
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Some Terminology

A vector x ∈ RN is k-sparse if it has at most k non-zero entries:
1-sparse:

x = (0, xi1 , 0)

2-sparse:
x = (0, xi1 , 0, xi2 , 0)

3-sparse:
x = (0, xi1 , 0, xi2 , 0, xi3 , 0)

k-sparse:
x = (0, xi1 , 0, xi2 , 0, xi3 , . . . , xik , 0)
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Uniqueness of Sparse Solutions

Let Φ be an n × N matrix and suppose Φx = b has a k-sparse
solution X. We want conditions under which X is unique (x = X is
the ONLY k-sparse solution).

Observation: If there IS another k-sparse solution X̃ then
w = X− X̃ satisfies Φw = 0, so w 6= 0 is in the null space N (Φ)
of Φ.
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Sparse Vector Arithmetic

Fact: If v and w are k-sparse, then v ±w is 2k-sparse, e.g., given
3-sparse vectors

v = (0, 0, 0, v4, 0, v6, 0, 0, v8, 0, 0)

and
w = (w1, 0,w3, 0, 0, 0, 0, 0, 0,w10)

the sum
v + w = (w1, 0,w3, v4, 0, v6, 0, v8, 0,w10)

is 6-sparse (maybe sparser).
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The Nullspace of Φ

So if X and X̃ are distinct k-sparse solutions to Φx = b, the vector
w = X− X̃ 6= 0 is in the nullspace N (Φ) and w is 2k-sparse.

Thus if k-sparse solutions to Φx = b are not unique, N (Φ) must
contain non-zero 2k-sparse vectors. So...

If we construct Φ so N (Φ) does NOT contain 2k-sparse vectors,
we can rest assured any k-sparse solution we find is the “right
one.”
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Nullspace Example

Let

Φ =

[
1 1/

√
2 0 −1/

√
2

0 1/
√

2 1 1/
√

2

]
.

There are no nonzero 2-sparse vectors in N (Φ). For example, if
x = (x1, x2, 0, 0) then

Φx = x1

[
1
0

]
+ x2

[
1/
√

2

1/
√

2

]
=

[
0
0

]
implies x1 = x2 = 0. The same goes for other possible 2-sparse
vectors.

Any 1-sparse solution to Φx = b is thus unique.
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The Restricted Isometry Property

Instead of requiring that Φx 6= 0 for all 2k-sparse vectors x (an
algebraic condition), require that:

For some c1 > 0 and all 2k-sparse vectors we have

c1‖x‖2 ≤ ‖Φx‖2.

This inequality is more analytic in nature.

Equivalently, we can state this as

c1 ≤ ‖Φu‖2.

for all 2k-sparse unit vectors.
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Instead of requiring that Φx 6= 0 for all 2k-sparse vectors x (an
algebraic condition), require that:

For some c1 > 0 and all 2k-sparse vectors we have

c1‖x‖2 ≤ ‖Φx‖2.

This inequality is more analytic in nature.

Equivalently, we can state this as

c1 ≤ ‖Φu‖2.

for all 2k-sparse unit vectors.
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The Restricted Isometry Property II

The inequality ‖Φu‖2 ≤ c2 for some c2 is automatic (because
u→ ‖Φu‖2 is continuous and the unit ball is compact).

We’ll throw it in anyway and require Φ to have the property that

c1 ≤ ‖Φu‖2 ≤ c2.

for all 2k-sparse unit vectors. This is one version of the restricted
isometry property (RIP).

If RIP of order 2k holds, any k-sparse solution to Φx = b is
unique, and so (in principle) can be found.
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The Restricted Isometry Property III

Observation: Multiplying Φ by a constant doesn’t change
solvability of Φx = b, so

multiply

c1 ≤ ‖Φu‖2 ≤ c2.

through by 2/(c1 + c2), and redefine Φ = 2Φ/(c1 + c2).

RIP becomes
(1− δ) ≤ ‖Φu‖2 ≤ (1 + δ).

with δ = (c2 − c1)/(c2 + c1). Note 0 ≤ δ < 1. The closer δ is to
zero, the better (to be explained...)
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When Does RIP Hold?

Verifying that RIP of any order holds for a specific Φ is
difficult, but...

Showing (1− δ) ≤ ‖Φu‖2 ≤ (1 + δ) holds with high
probability for many types of randomly generated Φ is fairly
easy.

If Φ is n× N with entries φij = N(0, 1/n) then RIP of order k
holds with probability 1− ε if

n ≥ C (δ, ε)k ln(N/k).
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Tools in the Proof

The proof is elementary and involves only

Sum of normals is normal, mean of sum is sum of means,
ditto variances.

Elementary probability, e.g., the “union” bound
P(E1 ∪ E2) ≤ P(E1) + P(E2).

Simple analysis, e.g., estimates for elementary integrals.
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Summary

If Φ is an n × N random matrix (n << N), any k-sparse
solution to

Φx = b

is almost certainly unique, if k , n, and N stand in the right
relation.

The RIP condition also guarantees that `1 minimization will
find the desired sparse solution.
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