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Introductory Problem

Ingredients

Given

@ Seven American Eagle
half-ounce gold coins, which
weigh 16.966 grams each.
But one may be counterfeit...

How can we find the bad coin with
the fewest weighings?
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Introductory Problem

Ingredients

Given

@ Seven American Eagle
half-ounce gold coins, which
weigh 16.966 grams each.
But one may be counterfeit...

@ An electronic balance.

How can we find the bad coin with
the fewest weighings?
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Introductory Problem

Pooling Design Approach

@ Label the coins with numbers
1 through 7.

@ For the first weighing place
coins 1, 3, 5, and 7 on the
scale.

@ For the second weighing use
coins 2, 3, 6, and 7.

@ For the third weighing use
coins 4, 5, 6, and 7.
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Introductory Problem

Combinatorial Group Test

@ Label the coins with numbers
1 through 7.

1010101 @ For the first weighing place
=101 100 11 coins 1, 3, 5, and 7 on the
0 001111 scale.

@ For the second weighing use
coins 2, 3, 6, and 7.

@ For the third weighing use
coins 4, 5, 6, and 7.

(Binary encoding)
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Introductory Problem

Combinatorial Group Test

@ Pattern of weights that
deviate from the expected

1010101 value reveals the bad coin:
=10110011 o If only the 1st weighing is
0001111

“off,” then coin 1 is the
counterfeit.

@ If both the 1st and 2nd
weighings are “off,” then coin
3 is the counterfeit.

(Binary encoding)
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Introductory Problem

General strategy

@ If there are k > 2 bad coins (of
unknown weights) the problem
gets a lot harder.

@ We need a general strategy: how
should we choose the subsets?

@ Randomly!
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Introductory Problem

Random Subsets

@ Suppose we now have 100 coins. Number them 1 to 100.

@ Choose a random subset where each coin is included with
probability % (flip each coin—if heads, put it in the subset; if
tails, leave it out).

@ Weigh the subset and record.

@ Repeat the previous two steps a total of n times, say, n = 25.
Claim: If there are only a few bad coins (say k < 3) and we weigh

n = 25 subsets, we almost certainly have enough information to
identify the bad ones.
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Introductory Problem

Random Subsets

@ Let X; denote the true DEVIATION of the ith coin’s weight
from nominal (16.966 grams).

@ We expect X; = 0 for most /.
@ Suppose the coins in the first random subset have indices
i =i,f,...,im (m=~50), and this subset weighs a; grams.
Then
X,'1 + )(,'2 + -+ X,'m = a; — 16.966m.

@ A similar equation holds for each of the other random subsets
that we choose.
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Introductory Problem

Random Subsets

Let x; be our estimate of the true value X;.

We end up with n = 25 linear equations and N = 100 unknowns
(the mass deviations X;), of the form

®x = b.

® is the sensing matrix, a 0 — 1 matrix with ®; = 1 if the jth coin
was included in the ith subset, and

b; is the mass of the jth subset minus 16.966 times the number of
coins in the subset.
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Introductory Problem

Random Subsets Example

For example, with N = 10 coins and n = 3 weighings we might
have

1001101000
®=|10011110100
0111100011

if the first weighing involves coins 1,4,5,7, the second involves
coins 3,4,5,6, 8, the third involves coins 2,3,4,5,9, 10.
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Introductory Problem

Random Subsets Example

In the coin problem with N = 100, suppose that the true values are
X13 = —0.3, X37 = 0.44, and X7; = —0.33, and all other X; =0
(but we don't know this — the goal is to deduce this information).
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Introductory Problem

Random Subsets Example

In the coin problem with N = 100, suppose that the true values are
X13 = —0.3, X37 = 0.44, and X7; = —0.33, and all other X; =0
(but we don't know this — the goal is to deduce this information).

To estimate the coin masses, we choose 25 random subsets, each
of size about 50, and weigh each subset. We obtain a system

dx = b.
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Introductory Problem

Random Subsets Example

In the coin problem with N = 100, suppose that the true values are
X13 = —0.3, X37 = 0.44, and X7; = —0.33, and all other X; =0
(but we don't know this — the goal is to deduce this information).

To estimate the coin masses, we choose 25 random subsets, each
of size about 50, and weigh each subset. We obtain a system

dx = b.

The matrix @ is 25 rows by 100 columns—there will be at least 75
free variables. Solving for the x; in any meaningful way looks
hopeless.
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Introductory Problem

Minimum ¢? Norm Solution

A traditional approach to “solving” a consistent under determined
system of equations Mx = b is to choose that (unique) vector x*
with the properties that
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Introductory Problem

Minimum ¢? Norm Solution

A traditional approach to “solving” a consistent under determined
system of equations Mx = b is to choose that (unique) vector x*
with the properties that

@ Mx* = b (x* actually satisfies the equations);
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Introductory Problem

Minimum ¢? Norm Solution

A traditional approach to “solving” a consistent under determined
system of equations Mx = b is to choose that (unique) vector x*
with the properties that

@ Mx* = b (x* actually satisfies the equations);

@ x* has minimum ¢2 norm, that is, if x** # x* satisfies
Mx** = b then ||x*||2 < [[x**|l2 where

1/2
Ix]l2 = (Z \x,-F)

is the usual Euclidean norm.
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Introductory Problem

Minimum ¢? Norm Solution

Computing the £2 minimum solution is a standard calculus/matrix
algebra problem.
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Introductory Problem

Minimum ¢? Norm Solution

Computing the £2 minimum solution is a standard calculus/matrix
algebra problem. In the present case we find
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Introductory Problem

Minimum ¢? Norm Solution

Geometric intuition:

The point of tangency will usually have many nonzero
components, so this approach rarely leads to a sparse solution.
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Introductory Problem

Minimum ¢° Norm Solution

Since we suspect the solution X is sparse we really ought to seek a
vector x such that

e ®x = b and

@ x has as few nonzero components as possible, that is, x
minimizes the quantity

[xllo = #{xi : x; # 0}

Unfortunately this optimization problem is too difficult to solve in
any practical way.
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Introductory Problem

Brute Force /° Solution

An expensive strategy for finding a sparse solution to ®x = b (®
dimensions n x N):
@ Look for a 1-sparse solution (try x = (0,...,0,x;,0,...,0) for
each 7, need N linear solves). If that doesn't work
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Introductory Problem

Brute Force /° Solution

An expensive strategy for finding a sparse solution to ®x = b (®
dimensions n x N):
@ Look for a 1-sparse solution (try x = (0,...,0,x;,0,...,0) for
each i, need N linear solves). If that doesn't work
@ Try 2-sparse solutions x = (0, x;,, 0, x;,, 0), for each (i1, i2)
pair, need N(N — 1)/2 linear solves. If that doesn't work

Tanya Leise Making Do with Less: An Introduction to Compressed Sensing



Introductory Problem

Brute Force /° Solution

An expensive strategy for finding a sparse solution to ®x = b (®
dimensions n x N):
@ Look for a 1-sparse solution (try x = (0,...,0,x;,0,...,0) for
each i, need N linear solves). If that doesn't work
@ Try 2-sparse solutions x = (0, x;,, 0, x;,, 0), for each (i1, i2)
pair, need N(N — 1)/2 linear solves. If that doesn't work

@ Try 3-sparse solutions, 4-sparse, k-sparse, etc.

Tanya Leise Making Do with Less: An Introduction to Compressed Sensing



Introductory Problem

Brute Force /° Solution

An expensive strategy for finding a sparse solution to ®x = b (®
dimensions n x N):
@ Look for a 1-sparse solution (try x = (0,...,0,x;,0,...,0) for
each i, need N linear solves). If that doesn't work
@ Try 2-sparse solutions x = (0, x;,, 0, x;,, 0), for each (i1, i2)
pair, need N(N — 1)/2 linear solves. If that doesn't work
@ Try 3-sparse solutions, 4-sparse, k-sparse, etc.
If N and k are of any significant size, this is completely hopeless!
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Introductory Problem

Minimum ¢ Norm Solution

A “compromise”: Seek an x that satisfies ®x = b and minimizes

the 1 norm
N
Ixlls =" Ixil.
i=1
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Introductory Problem

Minimum ¢ Norm Solution

A “compromise”: Seek an x that satisfies ®x = b and minimizes

the 1 norm
N

Ixlls = |-

i=1
This might look hard since |x| isn't differentiable, but it can be
converted into a standard “easy” linear programming problem.
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Introductory Problem

Minimum ¢ Norm Solution

Geometric intuition:
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Introductory Problem

Minimum ¢ Norm Solution
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The ¢! minimization recovers X exactly!

Tanya Leise Making Do with Less: An Introduction to Compressed Sensing



Introductory Problem

Probability of ¢! Success

The more weighings we do (for any fixed number of defective
coins) the better chance of success £ minimization has.

Probability of success

o o o ©
o v » » @

—_

—1 bad coin
—2 bad coins | |
—3 bad coins
—4 bad coins
—>5 bad coins | -

10 15 20 25 30 35 40
Number of weighings
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Introductory Problem

Main Points of This Talk

e If x* is a sparse (mostly zero) vector, ® a random matrix, and
®x* = b then x* is almost certainly the only sparse solution
to &x = b, and

e With high probability, minimizing ||x||1 subject to ®x = b will
recover x = x* exactly.
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Introductory Problem

Bit of History

@ The idea of recovering sparse signals using ¢} minimization
appeared in the mid 1980s, in signal processing and inverse
problems, and were extended by Donoho et al. around 2002.

@ A more comprehensive framework was developed around 2006
with landmark papers by Candes, Romberg, Donoho, Tao.

@ Compressed sensing is now a very hot area in mathematics,
statistics, computer science, and engineering.
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Uniqueness and the Null Space

Some Terminology

A vector x € RV is k-sparse if it has at most k non-zero entries:

1-sparse:

x = (0, x;,,0)

2-sparse:
X = (0, Xiy 0, Xip s 0)
3-sparse:
X = (07 Xiy 07 Xiy 07 Xiz 0)
k-sparse:

x = (0,x3,0,x;,,0,xi, ...,x;,0)
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Uniqueness and the Null Space

Uniqueness of Sparse Solutions

Let ® be an n x N matrix and suppose ®x = b has a k-sparse
solution X. We want conditions under which X is unique (x = X is
the ONLY k-sparse solution).
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Uniqueness and the Null Space

Uniqueness of Sparse Solutions

Let ® be an n x N matrix and suppose ®x = b has a k-sparse
solution X. We want conditions under which X is unique (x = X is
the ONLY k-sparse solution).

Observation: If there IS another k-sparse solution X then
w = X — X satisfies ®w = 0, so w # 0 is in the null space N (®)
of ®.

Tanya Leise Making Do with Less: An Introduction to Compressed Sensing



Uniqueness and the Null Space

Sparse Vector Arithmetic

Fact: If v.and w are k-sparse, then v = w is 2k-sparse, e.g., given
3-sparse vectors

V= (07 07 07 Vy, 0) V6705 Oa Vs, 07 0)

and
W = (W17 07 w3, 07 07 07 070707 W]-O)
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Uniqueness and the Null Space

Sparse Vector Arithmetic

Fact: If v.and w are k-sparse, then v = w is 2k-sparse, e.g., given
3-sparse vectors

V= (07 07 07 Vy, 0) V6705 Oa Vs, 07 0)

and
W = (W17 07 w3, 07 07 07 070707 W]-O)

the sum
V+w= (W]-?O? w3, Va, Oa Ve, 07 Vs, 07 WlO)

is 6-sparse (maybe sparser).
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Uniqueness and the Null Space

The Nullspace of ®

Soif X anNd X are distinct k-sparse solutions to ®x = b, the vector
w = X — X #£ 0 is in the nullspace N (®) and w is 2k-sparse.
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Uniqueness and the Null Space

The Nullspace of ®

Soif X anNd X are distinct k-sparse solutions to ®x = b, the vector
w = X — X #£ 0 is in the nullspace N (®) and w is 2k-sparse.

Thus if k-sparse solutions to ®x = b are not unique, N'(®) must
contain non-zero 2k-sparse vectors. So...
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Uniqueness and the Null Space

The Nullspace of ®

Soif X anNd X are distinct k-sparse solutions to ®x = b, the vector
w = X — X #£ 0 is in the nullspace N (®) and w is 2k-sparse.

Thus if k-sparse solutions to ®x = b are not unique, N'(®) must
contain non-zero 2k-sparse vectors. So...

If we construct ® so N'(®) does NOT contain 2k-sparse vectors,
we can rest assured any k-sparse solution we find is the “right

one.
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Uniqueness and the Null Space

Nullspace Example

Let
1 1/v2 0 —1/V2

¢ = 0 1/vV2 1 1/vV2 |’
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Uniqueness and the Null Space

Nullspace Example

e o— |1 1/vV2 0 —1/2
Lot e ]

There are no nonzero 2-sparse vectors in N/(®). For example, if
x = (x1,x2,0,0) then

a3 ) ]

implies x; = xo = 0. The same goes for other possible 2-sparse
vectors.

Tanya Leise Making Do with Less: An Introduction to Compressed Sensing



Uniqueness and the Null Space

Nullspace Example

Let
o— |1 1/vV2 0 —1/2
Tlo 1V2 1 12 |
There are no nonzero 2-sparse vectors in N/(®). For example, if
x = (x1,x2,0,0) then

a3 ) ]

implies x; = xo = 0. The same goes for other possible 2-sparse
vectors.

Any 1-sparse solution to ®x = b is thus unique.
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The Restricted Isometry Property

The Restricted Isometry Property

Instead of requiring that ®x # 0 for all 2k-sparse vectors x (an
algebraic condition), require that:
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The Restricted Isometry Property

The Restricted Isometry Property

Instead of requiring that ®x # 0 for all 2k-sparse vectors x (an
algebraic condition), require that:

For some ¢; > 0 and all 2k-sparse vectors we have

allxll2 < [|®x]|2.
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The Restricted Isometry Property

The Restricted Isometry Property

Instead of requiring that ®x # 0 for all 2k-sparse vectors x (an
algebraic condition), require that:

For some ¢; > 0 and all 2k-sparse vectors we have
allx[z < [[®x]2.

This inequality is more analytic in nature.
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The Restricted Isometry Property

The Restricted Isometry Property

Instead of requiring that ®x # 0 for all 2k-sparse vectors x (an
algebraic condition), require that:

For some ¢; > 0 and all 2k-sparse vectors we have
allx[z < [[®x]2.
This inequality is more analytic in nature.
Equivalently, we can state this as
C1 S H¢U”2

for all 2k-sparse unit vectors.
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The Restricted Isometry Property

The Restricted Isometry Property |l

The inequality ||®u||2 < ¢, for some ¢, is automatic (because
u — ||®ul| is continuous and the unit ball is compact).
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The Restricted Isometry Property

The Restricted Isometry Property |l

The inequality ||®u||2 < ¢, for some ¢, is automatic (because
u — ||®ul| is continuous and the unit ball is compact).

We'll throw it in anyway and require ® to have the property that
C1 S ||¢uH2 § .

for all 2k-sparse unit vectors. This is one version of the restricted
isometry property (RIP).
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The Restricted Isometry Property

The Restricted Isometry Property |l

The inequality ||®u||2 < ¢, for some ¢, is automatic (because
u — ||®ul| is continuous and the unit ball is compact).

We'll throw it in anyway and require ® to have the property that
C1 S ||¢uH2 § .

for all 2k-sparse unit vectors. This is one version of the restricted
isometry property (RIP).

If RIP of order 2k holds, any k-sparse solution to ®x = b is
unique, and so (in principle) can be found.
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The Restricted Isometry Property

The Restricted Isometry Property Ill

Observation: Multiplying ® by a constant doesn’t change
solvability of ®x = b, so
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The Restricted Isometry Property

The Restricted Isometry Property Ill

Observation: Multiplying ® by a constant doesn’t change
solvability of ®x = b, so multiply

C1 § ||<DuH2 § .

through by 2/(c1 + ¢2), and redefine ® = 2®/(c; + ¢3).
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The Restricted Isometry Property

The Restricted Isometry Property Ill

Observation: Multiplying ® by a constant doesn’t change
solvability of ®x = b, so multiply

C1 § ||<DuH2 § .

through by 2/(c1 + ¢2), and redefine ® = 2®/(c; + ¢3).
RIP becomes
(1-9) < [®uf2 < (1+9).

with § = (c2 — c1)/(c2 + c1). Note 0 < 6 < 1. The closer ¢ is to
zero, the better (to be explained...)
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The Restricted Isometry Property

When Does RIP Hold?

o Verifying that RIP of any order holds for a specific ® is
difficult, but...
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The Restricted Isometry Property

When Does RIP Hold?

o Verifying that RIP of any order holds for a specific ® is
difficult, but...

@ Showing (1 —¢) < ||®ul|2 < (14 6) holds with high
probability for many types of randomly generated ® is fairly
easy.
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The Restricted Isometry Property

When Does RIP Hold?

o Verifying that RIP of any order holds for a specific ® is
difficult, but...

@ Showing (1 —¢) < ||®ul|2 < (14 6) holds with high
probability for many types of randomly generated ® is fairly
easy.

o If ®is n x N with entries ¢;; = N(0,1/n) then RIP of order k
holds with probability 1 — € if

n> C(d,e)kIn(N/k).
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The Restricted Isometry Property

Tools in the Proof

The proof is elementary and involves only

@ Sum of normals is normal, mean of sum is sum of means,
ditto variances.

@ Elementary probability, e.g., the “union” bound
P(El U E2) < P(El) + P(Ez)

@ Simple analysis, e.g., estimates for elementary integrals.
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Summary and References

Summary

e If ®is an n x N random matrix (n << N), any k-sparse
solution to

dx=b
is almost certainly unique, if k, n, and N stand in the right
relation.

@ The RIP condition also guarantees that ¢! minimization will
find the desired sparse solution.
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Summary and References
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