Math 294 Exercises on Duality

1. Consider the optimization problem

$$p^* = \min_{x \in \mathcal{D}} f_0(x)$$
 s.t. $f_1(x) \le 0.$

For each pair of functions f_0 and f_1 on the given domain \mathcal{D} , state whether the resulting problem is convex, state the dual problem, and then solve the primal and dual problems (determine p^* , x^* , d^* , and λ^*).

(a) $f_0(x) = x$, $f_1(x) = x^2 - 1$, and $\mathcal{D} = \mathbb{R}$. (b) $f_0(x) = x^3$, $f_1(x) = 1 - x$, and $\mathcal{D} = \{x \in \mathbb{R} : x \ge 0\}$. (c) $f_0(x) = x$, $\mathcal{D} = \mathbb{R}$, and

$$f_1(x) = \begin{cases} -x+2 & \text{if } x \ge 1\\ x & \text{if } -1 \le x \le 1\\ -x-2 & \text{if } x \le -1 \end{cases}$$

2. Consider the optimization problem

$$p^* = \min_{x \in \mathbb{R}^2} (-x_1 x_2)$$
 s.t. $x_1 + x_2^2 \le 2$ and $x_1 \ge 0$.

- (a) Sketch the feasible set and level sets of the objective function.
- (b) State the KKT conditions.
- (c) Solve the system of equations given by the KKT conditions. Be sure to check all possible cases of the two complementary slackness conditions.
- 3. Consider the optimization problem

$$p^* = \min_{x \in \mathbb{R}^2} \|x - x_0\|_2^2 \text{ s.t. } \|x\|_2^2 \le 1.$$

where $x_0 = (-4, 3)$.

- (a) State the KKT conditions.
- (b) Solve the system of equations given by the KKT conditions.
- (c) Find the optimal value p^* and optimal point x^* .

4. Consider the optimization problem

$$p^*(u) = \min_{x \in \mathbb{R}} x^2 - 4x \text{ s.t.} x^2 - 1 \le u$$

for some fixed number u with |u| < 1.

- (a) Determine x_{λ} and $g(\lambda, u)$.
- (b) Determine λ_u and $d^*(u)$.
- (c) Use the above to obtain $p^*(u)$ and $x^*(u)$.
- (d) Verify that $\nabla_{\lambda} g(\lambda, u) = F(x_{\lambda}, u)$, where F(x, u) is the vector formed by the constraint functions.