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1. AN EXPERIMENT WITH COUPLED OSCILLATORS. Let’s begin with an

experiment that requires minimal equipment: you just need your left and right forefingers.

To get warmed up, first point your right forefinger in the natural way; we refer to this

position as the “equilibrium position.” Next move your right forefinger back and forth in a

motion that could be graphed as shown in Figure 1, where the displacement of the fingertip

equals the distance from the equilibrium position.

Continue oscillating your right forefinger and begin oscillating your left forefinger (it may

be helpful to point your fingers at each other and anchor your wrists; only the fingers should

move, not your hands). Unless you are a drummer, your fingers will tend to naturally fall

into one of two relative motions. The motion that is generally the most comfortable is to

move the fingers in unison, as though one were a mirror image of the other. We refer to this

as “in-phase” oscillation, and the graphs of the left and right finger motions will be identical.

The other natural motion is to move the fingers opposite each other, so that they pass each

other at the equilibrium point going in opposite directions. We refer to this as “antiphase”
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Figure 1: Oscillation x(t) = 2 cos(2πt − π/2) of a single finger with a frequency ω = 2π (yielding
one cycle per second), amplitude r = 2, and phase angle φ = −π/2.
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Figure 2: Out-of phase oscillation of the two fingers at a frequency of one cycle per second, where
the solid line represents the right finger xR(t) = 2 cos(2πt − π/2) and the dotted line the left
finger xL(t) = 2 cos(2πt + π/2). The phase difference is the difference between the phase angles:
4φ = π/2− (−π/2) = π.

oscillation, and the graphs of the left and right finger motions will be something like Figure

2.

Now we’re ready for the interesting part of this experiment. Start oscillating your fingers

antiphase at a comfortable pace. Gradually speed up the motion, increasing the frequency

until something interesting happens. You should experience a sudden “phase transition”

from antiphase to in-phase motion. This transition tends to be abrupt; past a certain

frequency, most people cannot oscillate their fingers opposite each other, although they can

still oscillate them in unison. The graph of this experiment might look something like the

caricature in Figure 3. A similar and even more intriguing experiment can be done with
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Figure 3: Caricature of the oscillations of two fingers as the frequency increases. The oscillations
are initially antiphase with a frequency of one cycle per second. As the frequency increases past
roughly 2 cycles per second, a transition occurs from antiphase to in-phase motion. Also observe
that the amplitude of the oscillations decreases from 2 inches to 1 inch as the frequency increases
from 1 cycle per second to more than 2 cycles per second. (These numbers are for illustrative
purposes and don’t correspond to actual experimental data.)

two people. Have each person swing one of their legs antiphase with the other person’s leg

(each person watches the other person’s leg in order to coordinate the leg motions). Increase

the frequency of the leg swinging, and you will witness the same phenomenon of the legs

snapping into synchronous motion at a critical frequency [14]. Try it!

These experiments may be nice parlor tricks (and can liven up a modeling or differential

equation course), but why bother studying such apparently inconsequential quirks in a serious

way? The overarching goal in such research is to understand how coordination is achieved

by our neuromuscular system, perhaps in conjunction with our perceptual system (a very

difficult and nearly overwhelming task). Studying a relatively simple system that includes

a few key features can be used as a stepping stone to eventually analyzing more important

but very complex systems.

Our goal in this article is to briefly explore a model of the “finger twiddling” phenomenon,

noting the model’s successes and shortcomings, and thereby to peek into the magical world of
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coupled nonlinear oscillators. We employ a different method of analysis than has previously

been applied to this model, in order to reveal more clearly its strengths and weaknesses and to

show how two forms of the model are related. This approach also has the advantage of being

accessible to a general mathematical audience, including advanced undergraduate students

in a differential equations or modeling course (TL’s students have found this material quite

appealing and a nice change from the usual sorts of applied problems).

The model we examine was constructed by Haken, Kelso, and Bunz [9] (and so dubbed

the HKB model) two decades ago with the aim of discovering the necessary ingredients in a

model to reproduce four basic features of their experimental results in the finger oscillations

task:

1. Only two stable states exist: in-phase motion and antiphase motion.

2. As frequency increases, the amplitude of motion decreases, as shown in Figure 3.

3. As the frequency increases past a critical frequency, antiphase motion abruptly changes

to in-phase motion.

4. Beyond this transition, only in-phase motion is possible. That is, for frequencies above

the critical frequency, only in-phase motion is stable, while below the critical frequency

both in-phase and antiphase motions are stable.

The general solution x(t) = r cos(ωt+φ) represents the sort of periodic motion of interest

for us, where r is the amplitude, ω is the frequency, and φ is the phase angle, as indicated

in Figures 1 and 2. In section 2, we propose a differential equation model of a single finger

that can (at least approximately) produce solutions of this form and also exhibits decreasing
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amplitude as the frequency increases. In section 3, we couple two of these differential equa-

tions and verify that all four desired experimental features emerge from the coupled system.

The analytical method we employ was chosen because it paints a broader picture of the

HKB model’s predictions than the methods used in [9, 10, 12], and reveals a mathematical

connection between the differential equation form of the HKB model given in section 3 and

the potential function form discussed in section 4. In section 5, we reflect on this modeling

effort and place it in a more general context.

We begin, as we began our first experiment, by considering the oscillation of a single

finger.

2. A SINGLE NONLINEAR OSCILLATOR The model for a single finger should both

exhibit decreasing amplitude of oscillation as the frequency increases and have the potential

for multiple stable states once it is coupled to another similar oscillator.

A good starting place is to treat each finger as a mass connected to a spring in order

to model the oscillations of “finger twiddling.” The simplest differential equation describ-

ing a mass-spring system is derived by combining Newton’s second law (force equals mass

times acceleration) with Hooke’s law (the force required to stretch or compress a string is

proportional to the displacement from equilibrium):

mẍ + kx = 0, (1)

where m is the mass and k is the Hooke’s law constant. The natural frequency of this system

is then ω =
√

k/m, and once set in motion the mass-spring oscillates at this frequency for-
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ever, with the amplitude depending on the initial position and velocity. Hence this simplest

mass-spring model cannot capture the complexity of behavior we are seeking.

To make the situation more realistic, a damping force should be added, where the damping

increases as the speed increases (imagine trying to walk through water versus running through

water). Because a linearly damped system returns to equilibrium, we need to add an external

forcing term in order to obtain steady periodic motion:

mẍ + cẋ + kx = Fe cos ωt, (2)

where c is the damping coefficient and Fe cos ωt is the external force. This system simply

oscillates (after a brief transient period) at the same frequency as the external force. Again,

we need to add a further ingredient in order to obtain interesting behavior.

We must now consider the addition of a nonlinearity of some sort. We could add nonlinear

damping terms, or we could generalize the forcing term to involve the displacement or velocity

in a nonlinear manner. The HKB model includes nonlinear damping terms in order to obtain

a natural mode of oscillation without a forcing term. Other modelers have made different

choices, for example see [4] which looks at adding perception to the model via the forcing

term.

Well-studied differential equations with nonlinear damping terms include the Van der Pol

equation

ẍ− αẋ + γx2ẋ + ω2x = 0, (3)
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and the Rayleigh equation

ẍ− αẋ + βẋ3 + ω2x = 0. (4)

Each system is self-sustaining, due to the minus sign in front of the linear “damping” term;

once set in motion, the system stays in motion in the absence of external forces. However,

the Van der Pol model does not fulfill the requirement that the amplitude of the oscillation

should decrease of the frequency increases, and the Rayleigh model predicts unbounded

amplitudes as the frequency decreases to zero. Fortunately, a combination of the two models

fulfills our modeling goals. The appropriateness of this choice is confirmed in [10], which

shows that such a hybrid model fits data from subjects very well, while the Van der Pol and

Rayleigh models by themselves do not.

Hence we consider the following hybrid of the Van der Pol and Rayleigh differential equa-

tions to model the position of a fingertip:

ẍ− αẋ + βẋ3 + γx2ẋ + ω2x = 0, (5)

where all coefficients are assumed to be positive. The nonlinear equation (5) has an approx-

imate oscillatory solution of the following form:

x(t) ≈ 2
√

α√
γ + 3βω2

cos(ωt + φ), (6)

where r = 2
√

α√
γ+3βω2

is the predicted amplitude of a finger oscillating with frequency ω, and

φ is the phase angle (determined by initial conditions). This approximate solution can be

derived fairly easily using what is sometimes referred to as the small parameter method of
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Poincaré as extended by Krylov-Bogoliubov, which also shows that the period of the true

solution equals 2π
ω

+ O(α2) (see, for example, chapter 10 of [13] for a classical treatment).

The approximate solution (6) can be used to determine best-fit values for α, β, and γ based

on single finger motion experiments with various values of ω. (Note that we assume α, β,

and γ are fixed parameters associated with a particular person’s finger, while ω is a control

parameter that can be varied in order to observe the system’s response.)

Now that we have a viable model for a single finger and an experimental means of deter-

mining parameter values for that model, we are ready to move on to the coupled system.

3. COUPLED NONLINEAR OSCILLATORS. To model the coordination between

the two fingers, we must couple two of the hybrid oscillators. Determining an appropriate

coupling function remains a very difficult open problem, so unfortunately there is little to

guide us here. To be consistent with our approach for modeling a single finger’s oscillations,

we again use a few odd-degree polynomial terms involving the displacement and the velocity,

mimicking the damping terms in (5): −αẋ+βẋ3 +γx2ẋ. Because finger coordination focuses

on the relative motion of the two fingers, it seems natural to replace the quantity x with

the difference xL − xR between the left and right fingers, leading to a coupling function

−a(ẋL − ẋR) + b(ẋL − ẋR)3 + c(xL − xR)2(ẋL − ẋR). If we wish to oscillate in unison, then

the differences 4x = xL − xR and 4v = ẋL − ẋR must be zero over the entire motion. If

4x and 4v are not quite zero, then the coupling function acts as a generalized forcing term

that nudges the fingers toward synchronization. If we wish to oscillate in opposite directions,

then 4x must be zero when 4v attains its maximum value, and vice versa. In essence, each

type of coordination corresponds to a certain pattern in 4x and 4v that is quite distinctive,
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and if the motion is near a stable pattern of motion, then the coupling function nudges the

system closer to that pattern.

Combining this coupling function with the differential equation (5) describing a single

finger’s motion results in the following system of coupled nonlinear differential equations:

ẍL − ẋL(α− βẋ2
L − γx2

L) + ω2xL = −(ẋL − ẋR)(a− b(ẋL − ẋR)2 − c(xL − xR)2), (7)

ẍR − ẋR(α− βẋ2
R − γx2

R) + ω2xR = −(ẋR − ẋL)(a− b(ẋR − ẋL)2 − c(xR − xL)2), (8)

where all coefficients are assumed to be nonnegative and the coupling coefficients a, b, and

c are assumed to be “small” relative to α, β, and γ, yielding a weak coupling. This system

is the HKB model with the addition of the b(ẋL − ẋR)3 terms, which have been included

here for purposes of showing how to determine which terms are necessary for modeling the

phenomenon and which are superfluous.

We wish to determine the limit cycles (i.e., periodic solutions of (7-8) , see Figure 4) of the

coupled oscillators and whether each limit cycle is stable. In particular, we are interested in

what changes in stability occur as the frequency ω increases (that is, we wish to verify that

the model can indeed experience the desired phase transitions). We also wish to discover

whether a weak coupling, i.e., “small” values of a, b, and c, can lead to the desired phase-

switching behavior.

We generalize our periodic solution for a single oscillator, x(t) = r cos(ωt+φ), by assuming

nearly periodic solutions for each finger, whose amplitudes and phase angles may change over
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Figure 4: The limit cycles for the HKB model look like line segments, with slope 1 for in-phase
and slope -1 for antiphase oscillatory motion, where the endpoints of the segments are located
at (±rL,±rR) for in-phase and (±rL,∓rR) for antiphase. The limit cycle shown in graph (a)
corresponds to both fingers oscillating as in Figure 1 and the limit cycle in (d) corresponds to the
motion in Figure 2. The numerical solutions of (7-8) shown in graphs (b) and (c) are converging
to solution #2 in Table 1, while those in graphs (e) and (f) are converging to #3. All four of these
numerical solutions use parameters α = 0.5, β = 0.001, γ = 0.38, a = 0.05, b = 0, c = 0.036,
and ω = 2π. Solutions to the HKB model can approach the limit cycle by either spiraling in, as
shown in the graphs (b) and (e), or via a sequence of segments with slopes approaching 1 or -1,
as shown in graphs (c) and (f). The spiraling occurs when the amplitudes of the two fingers are
equal but the phase difference is not at a stable value (not at 0 or π), in which case the phase
difference approaches the stable value very slowly (each cycle takes one second). The sequence of
segments occurs when the amplitudes are initially different but the phase difference is at a stable
value. Physically, the HKB model predicts that the fingers approach a stable limit cycle much more
slowly than occurs in reality. This slowness also appears in the HKB model when the frequency is
increased past the critical frequency: while our hands rapidly switch from in-phase to antiphase in
just two or three cycles, the HKB model predicts that it takes many cycles, with solutions gradually
incrementing the phase difference from 0 to π, indicating a weakness of the model. The addition of
noise can speed up the return of the motion to a stable limit cycle following a small perturbation
so that the timing is comparable to that in experimental data [15]. Also note that, as far as the
authors know, how human finger motions actually approach the stable limit cycles has not been
reported.
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time:

xk(t) = rk(t) cos(ωt + φk(t)), (9)

for k = L, R. A limit cycle has ṙk = 0 and φ̇k = 0, so we seek limit cycles by finding

expressions for ṙk and φ̇k, then setting them equal to zero and solving for rk and φk, for

k = L, R.

We observe that if these oscillations are fairly steady (recalling that the coupling between

the finger is assumed to be weak) with ṙk ≈ 0 and φ̇k ≈ 0, then the velocity obtained by

differentiating (9) is approximately

ẋk(t) = −ωrk(t) sin(ωt + φk(t)). (10)

Of course, this neglects the time derivatives of rk(t) and φk(t). Comparing (10) to the time

derivative of (9) under the assumptions that ṙk 6= 0 and φ̇k 6= 0, we see that (10) is only true

if, for k = L, R,

ṙk(t) cos(ωt + φk(t))− rk(t)φ̇k(t) sin(ωt + φk(t)) = 0. (11)

We have four equations in ṙL, ṙR, φ̇L, and φ̇R if we take the two equations given by (11), plus

the two equations obtained by substituting (9) and (10) into (7) and (8), where the second

derivatives are obtained by taking the derivative of (10). Solving these four equations for ṙL,

ṙR, φ̇L, and φ̇R leads to rather complicated and unhelpful expressions that involve time in a

complex manner (note that use of a computer algebra package is extremely helpful for solving

the four equations, as well as for other calculations done below–see www.amherst.edu/∼tleise
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for a sample Mathematica file). Since we assume that these time derivatives change very

little over one period 2π
ω

, we can simplify their expressions by averaging over a period. This

procedure leads to the following, where 4φ = φL − φR is the phase difference between the

hands:

ṙL(t) ≈ ω

2π

∫ t+2π/ω

t

ṙL(τ)dτ =
1

8
[rR(4a− (c + 3bω2)(3r2

L + r2
R)) cos4φ

+ rL(4(α− a) + r2
L(c− γ + 3(b− β)ω2) + r2

R(c + 3bω2)(2 + cos 24φ))], (12)

ṙR(t) ≈ ω

2π

∫ t+2π/ω

t

ṙR(τ)dτ =
1

8
[rL(4a− (c + 3bω2)(3r2

R + r2
L)) cos4φ

+ rR(4(α− a) + r2
R(c− γ + 3(b− β)ω2) + r2

L(c + 3bω2)(2 + cos 24φ))], (13)

4φ̇(t) ≈ ω

2π

∫ t+2π/ω

t

(φ̇L(τ)− φ̇R(τ))dτ (14)

=
(r2

L + r2
R)

8rLrR

[(
−4a + (c + 3bω2)(r2

L + r2
R)

)
sin4φ− rLrR(c + 3bω2) sin 24φ

]
. (15)

Note the appearance of the double angle 24φ, which plays a key role in allowing the existence

of two stable phases for our system.

We can now determine possible limit cycles by setting the expressions for the time

derivatives (12-15) equal to zero and solving for rL, rR, and 4φ. Setting the expres-

sion (15) equal to zero leads immediately to the critical values 4φ = 0, 4φ = π, and

4φ = cos−1(
−4a+(c+3bω2)(r2

L+r2
R)

2(c+3bω2)rLrR
). Setting the expressions (12) and (13) each equal to zero is
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algebraically more complicated, but leads to the critical values

|rL| = |rR| =
2
√

α− a(1− cos4φ)√
γ + 3βω2 − (c + 3bω2)(3− 4 cos4φ + cos 24φ)

, (16)

valid for all three critical values of4φ. We also find solutions with unequal amplitudes, which

is perhaps a bit of a surprise (and has not been previously mentioned in the literature). See

Table 1 for a complete listing of the equilibria and for what parameter range each exists,

as well as its stability. We also see that imposing the conditions α > 2a, β > 8b, and

γ > 8c guarantees the existence of the antiphase solution (#3 in Table 1) for all values of

the frequency ω. These restrictions are consistent with our assumption of a weak coupling.

Now that we have found the limit cycles, we determine their local stability via an eigen-

value analysis. Equilibrium solution #1 in the table (the zero solution) is a fixed point of the

original system of differential equations, so we can take the usual Jacobian matrix of partial

derivatives after rewriting the original second order system (7-8) as a first order system of

four equations. This leads to the eigenvalues

λ1,2 =
1

2
(α±

√
α2 − 4ω2), (17)

λ3,4 =
1

2
(α− 2a±

√
(α− 2a)2 − 4ω2), (18)

all four of which have positive real part if α > 2a and ω 6= 0, implying that the equilibrium

rL = 0 = rR is a source. That is, once the system is set in motion it does not stop or even

asymptotically approach a static state, justifying the label “self-sustaining.”

The local stability of the remaining equilibria (approximate limit cycles of the original
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Table 1: Equilibria of the system (12)-(15), corresponding to limit cycles of the original system,
with conditions under which each exists. We do not list equilibria that duplicate those given here,
for example, swapping rL and rR or changing signs and adjusting 4φ. (Observe that the symmetry
of this system implies that if (xL, xR) is a solution to (7)-(8), then so are (xR, xL), (−xL,−xR),
and (−xR,−xL).) An equilibrium is called a source (repelling) if all eigenvalues are positive, a sink
(attracting) if all eigenvalues are negative, and a saddle (attracting in some directions, repelling
in others) if there are both positive and negative eigenvalues. The antiphase limit cycle #3 can
be either a sink or a saddle, depending on the frequency ω. The numbering is for convenience in
referring to particular limit cycles.

# Amplitude Phase difference Existence Conditions Stability
1 rL = rR = 0 - - Source

2 rL = rR = 2
√

α
γ+3βω2 4φ = 0 - Sink

3 rL = rR = 2
√

α−2a
γ+3βω2−8(c+3bω2)

4φ = π α−2a
γ−8c+3(β−8b)ω2 > 0 Varies

4 rL = rR = 2
√

α
γ+3βω2 4φ = a

c+3bω2 < 4α
γ+3βω2 Saddle

cos−1(1− a(γ+3βω2)
2α(c+3bω2)

)

5 rL =
−
√

α+a+

r
α(1+

4(c+3bω2)

γ+3βω2 )−3a
√

c+γ+3(b+β)ω2
4φ = 0 a

c+3bω2 < α
γ+3βω2 Saddle

rR =

√
α+a+

r
α(1+

4(c+3bω2)

γ+3βω2 )−3a
√

c+γ+3(b+β)ω2
α > 8a if β > 8b, γ > 8c

6 rL =

√
α+a−

r
α(1+

4(c+3bω2)

γ+3βω2 )−3a
√

c+γ+3(b+β)ω2
4φ = π 3a−α

4(c+3bω2)
≤ α

γ+3βω2 < a
c+3bω2 Saddle

rR =

√
α+a+

r
α(1+

4(c+3bω2)

γ+3βω2 )−3a
√

c+γ+3(b+β)ω2

7 rL = 0, rR = 2
√

α−a
γ−c+3(β−b)ω2 4φ = ±π

2
- Saddle
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system) can be determined by examining the signs of the eigenvalues of the Jacobian matrix

∂( ˙rL, ˙rR,4φ̇)
∂(rL,rR,4φ)

evaluated at each equilibrium. We hypothesize that typically a person will not

move one finger through a significantly larger arc than the other finger (though it would

be an interesting experiment to try “asymmetrical twiddling” to see if behavior like that in

Figure 5 actually occurs), so we focus our attention on the cases pertinent to our modeling

exercise, i.e., those with equal left and right amplitudes (#2, #3, and #4 in Table 1).

The eigenvalues of ∂( ˙rL, ˙rR,4φ̇)
∂(rL,rR,4φ)

evaluated at equilibrium #2 are

λ1 = −2aπ/ω, (19)

λ2 = −2απ/ω, (20)

λ3 = −2(a + α)π/ω, (21)

corresponding to eigenvectors [0 0 1], [1 1 0], and [1 −1 0], respectively. All three eigenvalues

are always negative if α > 0 and a > 0. This solution represents a limit cycle of in-phase

oscillations that is an attractor or sink. Observe that the eigenvalue λ1, since it corresponds

to eigenvector [0 0 1], equals ∂(4φ̇)
∂(4φ)

and so controls the rate of convergence of the phase

difference 4φ.

The eigenvalues of ∂( ˙rL, ˙rR,4φ̇)
∂(rL,rR,4φ)

evaluated at equilibrium #3 are

λ1 = −2π

ω

(4α(c + 3bω2)− a(γ + 3βω2)

γ − 8c + 3(β − 8b)ω2

)
, (22)

λ2 = −2π

ω
(α− 2a), (23)

λ3 = −2π

ω

(4α(c + 3bω2) + (α− 3a)(γ + 3βω2)

γ − 8c + 3(β − 8b)ω2

)
, (24)
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corresponding to eigenvectors [0 0 1], [1 1 0], and [1 − 1 0], respectively. If α ≥ 3a,

β > 8b, and γ > 8c, then λ2 and λ3 are negative. If we have the further condition that

a
c+3bω2 < 4α

γ+3βω2 , then λ1 < 0, in which case this solution represents a stable limit cycle of

antiphase oscillations. If a
c+3bω2 > 4α

γ+3βω2 , then this limit cycle is an unstable saddle. In

other words, the stability changes when the frequency increases past the critical value

ωcr =

√
4αc− aγ

3(aβ − 4αb)
. (25)

Careful examination of (25) reveals the role of various parameters in the HKB model. If

we set either α or a equal to zero, then ωcr is imaginary and there is no critical frequency

triggering a phase transition. If either γ or b is set equal to zero, then ωcr remains well-

defined. The parameter γ is not necessary for the phase transition to occur, and its primary

role is to ensure that the amplitude does not blow up as ω → 0. However, the parameter b is

playing no important role and could be removed from the model. If we do set b = 0, then β

and c must both be nonzero in order for ωcr to be well-defined. Hence all of the parameters

except b play important roles.

The equilibrium #4 involves a phase difference 0 < 4φ < π (somewhere between in-phase

and antiphase), and only exists when the antiphase equilibrium #3 is stable (frequency ω <

ωcr). As the frequency increases past the critical value (ω > ωcr), the antiphase equilibrium

become unstable and the equilibrium #4 disappears (in dynamical systems language, a

bifurcation occurs at ω = ωcr). The equilibrium #4, when it exists, is unstable, having two

negative eigenvalues and one positive eigenvalue.
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Figure 5: The analysis of limit cycles and their local stability does not reveal global behavior of
solutions, e.g., the transient behavior of solutions before they finally reach a stable state. Here is
an example of coupled oscillators starting near the unstable equilibrium #6. Since this equilibrium
is a saddle, the solution remains nearby for many oscillations before veering toward equilbrium #7
(again a saddle), then finally homing in on the sink at equilibrium #2. The heavy line corresponds
to xL and the lighter line to xR as listed in Table 1. The parameter values are α = 0.5, β = 0.001,
γ = 0.38, a = 0.05, b = 0, c = 0.036, and ω = 6π (slightly greater than the critical frequency).

4. PHASE SHIFTS AND ENERGY WELLS.

The HKB model has an alternate and much simpler form, which has considerable exper-

imental support and is more often cited than the differential equation form (7-8). We first

explain what this alternate form is and then show how this simpler form can be justified as

a simplification of the original model.

The idea is to assume the existence of a function V (4φ; r) (called a potential function)

such that

4φ̇ = −dV (4φ; r)

d4φ
. (26)

One interpretation of the potential function is that it specifies how the system will react

given the current phase difference: “My left finger is still ahead of my right finger (4φ > 0)

so I should react with 4φ̇ < 0 to get the fingers in sync.” To reproduce the four desired

properties of the oscillating fingers experiment we need a function with minima at 4φ = 0
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and 4φ = π for frequencies below the critical one, and the single minimum at 4φ = 0 above

the critical frequency. A simple function that satisfies these constraints is

V (4φ; r) = −A cos(4φ)−B cos(24φ), (27)

where A and B may be functions of amplitude, frequency, and other parameters, and the

critical frequency will be associated with B/A = 1/4 (the function B/A will dictate how

increasing the frequency affects the relative finger motion). See Figure 6. It is important to

note that the amplitude r = rL = rR is assumed to be constant and equal for both fingers

for all phase differences, whereas the differential equation model yields different amplitudes

for different phase differences. If the coupling is very weak (a� α, b� β, and c� γ), then

the amplitudes of equilibria #2, #3, and #4 are quite similar, so it is not unreasonable to

simplify the model by assuming a constant amplitude, say, equal to 2
√

α
γ+3βω2 .

In order to link the differential equation form of the HKB model given by (7-8) to this

potential function form, we examine the role of ∂(4φ̇)
∂(4φ)

in the eigenvalue analysis of the previous

section. We wish to link the eigenvalue governing the stability of the phases to the potential

function V . The Jacobian matrix ∂( ˙rL, ˙rR,4φ̇)
∂(rL,rR,4φ)

evaluated at equilibria #2 and #3 each have

an eigenvalue λ1 = ∂(4φ̇)
∂(4φ)

corresponding to eigenvector [0 0 1]. The sign of this eigenvalue

determines the stability of the phase difference (that is, whether in-phase and antiphase

motion are each stable). The eigenvalues λ2,3 correspond to the eigenvectors [1 1 0] and

[1 − 1 0] and so govern the amplitudes rL and rR near each equilibria. These eigenvalues

are both negative if α ≥ 3a, so the amplitudes remain very stable while the phase difference

φ = π can possibly lose stability as the frequency ω is varied.
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We want minima of V (which satisfy ∂2V
∂(4φ)2

> 0) to correspond to stable equilibria (where

∂(4φ̇)
∂(4φ)

< 0). By setting − ∂2V
∂(4φ)2

equal to the eigenvalue ∂(4φ̇)
∂(4φ)

, we can associate the con-

cavity of the potential function V (4φ; r) with the sign of the eigenvalue. Observe that an

integration of ∂(4φ̇)
∂(4φ)

= − ∂2V
∂(4φ)2

with respect to 4φ takes us to (26).

Formally, set − ∂V
∂(4φ)

equal to the general expression for 4φ̇ given in (15), letting r =

rL = rR. After integrating with respect to 4φ, we obtain the following potential function:

V (4φ; r) = (−a + (3bω2 + c)r2/2) cos(4φ)− 1

8
(3bω2 + c)r2 cos(24φ). (28)

We see that we have a potential function of the desired form (27) where A = a−(3bω2+c)r2/2

and B = 1
8
(3bω2 + c)r2.

The dynamical system generated by (26) and (28) and the differential equation system (7-

8) exhibit similar dynamics in the sense that the minima of V correspond to stable limit cycles

for4φ = 0 and π. Also, the minimum of V at4φ = π changes to a maximum if the frequency

increases past the critical value, while simultaneously the maximum at 4φ = cos−1(−A/4B)

disappears, in parallel with the bifurcation that occurs in (7-8). However, this potential

function form of the HKB model is not equivalent to the differential equation form. The

dynamical system (26-27) is one-dimensional (in 4φ only) and the antiphase equilibrium is

a source for ω > ωcr, while (7-8) leads to a three-dimensional dynamical system (in rL, rR,

and4φ) where the antiphase equilibrium becomes a saddle. Also, we have played rather free

and loose with the eigenvalues of the linearization of the approximated system (12)-(15) in

order to generate a potential function with the desired qualitative dynamics. To analyze the

approximate system more rigorously, one could note that, for the antiphase equilibrium, the
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Figure 6: Graphs of the potential function V (4φ) = −A cos4φ−B cos 24φ that governs the phase
difference between the two fingers. Both in-phase (4φ = 0) and antiphase (4φ = π) bimanual
motion are stable for B/A > 0.25 (both correspond to minima of V ), but only the in-phase is stable
for B/A < 0.25 (antiphase now corresponds to a maximum of V ).

stable invariant manifold is homeomorphic to the rLrR-plane while the unstable invariant

manifold is homeomorphic to the line φ = π for ω > ωcr; at ω = ωcr, a center manifold

replaces the unstable manifold and is tangent to the line φ = π (invoking the Hartman-

Grobman and center manifold theorems, see [5] p 31). For the purposes of understanding

qualitative dynamics, this approach is much more work for little or no benefit to the modeling

goals, and the approach taken here of neglecting what happens to the amplitude and focusing

on the critical eigenvalue governing 4φ satisfies our needs.

5. CLOSING REMARKS. At first glance, the HKB model may seem to be contrived

in the sense that, while it reproduces observed phenomena reasonably well, it is not derived

from first principles, as these are currently uncertain. The model is not completely ad hoc,

however, and should not be immediately dismissed (see, for example, the in-depth discussions
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of various approaches to constructing nonlinear dynamical models based on experimental

data in the context of human motion in [1, 3, 7]). This model is a vital, early step in a

broader research effort aimed at uncovering fundamental features of pattern formation at

all scales, from clusters of neurons to parts of the body to groups of people. The incredible

complexity of these dynamical systems, compounded by our current paucity of knowledge,

means that any attempt to create relatively accurate quantitative models is unlikely to lead

to an increase in an understanding of the underlying principles that govern such systems. On

the other hand, focusing attention on a relatively simple, representative phenomenon, like

the one described in this article, and then developing a mathematical model that reproduces

key features, can lead to greater insight, which, after all, is the principle goal of modeling.

The HKB model has been successful in this sense: it has indeed led to important insights

about coordinated movement. As described earlier, analysis of the HKB model supports

the hypothesis that in order for a system to have both multiple states and the possibility

of switching between them, it must be nonlinear with nonlinear coupling. We saw that

the critical frequency ωcr only emerges if we have a nonlinear damping expression −αẋ +

βẋ3 + γx2ẋ in the description of an individual oscillator, plus a nonlinear coupling function

−a(ẋL− ẋR)+ c(xL−xR)2(ẋL− ẋR). This critical result reveals that nonlinearity lies at the

heart of these systems and is the key to producing flexible but stable behavior (i.e., multiple

stable states with the ability to switch between them by changing a key parameter). At a

higher level, not only has the exploration of the HKB model led to much fruitful discussion,

further experiments, and the discovery of interesting properties of our neuromuscular system,

but it has also helped pave the way to the idea of self-organization by dynamical systems

within the human nervous system as well as within human society (see [11], particularly
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chapter 4).

It must be recognized, however, that there are some serious weaknesses in the HKB model

as currently implemented. The model does not allow other possible stable phase differences,

does not include the role of perception in coordination, the predicted route to stable states

and in switching between stable states is much slower than observed, and solutions can be

pulled toward possibly non-physical states, such as the near-zero amplitude seen in Figure 5,

before finally approaching a stable limit cycle. Furthermore, although the HKB differential

equation model only matches local stability properties, we would ideally like the model to

have global stability properties that match physical behavior (the potential function form

somewhat ameliorates this problem).

The HKB model can serve as a gateway to a deeper understanding of more complex

phenomena such as gait changes in horses, insects, and even millipedes. For example, [6, 8]

show, using symmetry arguments, that an appropriate coupling of 2n differential equation

cells leads to accurate predictions of stable gaits for a creature with n legs. Interestingly,

some researchers [2] have attempted to improve the HKB model via two pairs of oscillators

(one coupled pair of “neural” oscillators that each couple to an oscillator representing a

finger), in a curious parallel to the 2n cells developed by Golubitksy and co-workers. These

models hint at how our neuromuscular systems might work, although no clear consensus has

emerged on this issue. What is clear is that there remain many opportunities for interesting

modeling to be done in this area.
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