Joint Distribution Practice Problems

Let X and Y be discrete random variables with joint probability mass function P(X=x,Y=y). Equate the terms and expressions on the left below with their corresponding formulas on the right.

1 Cov(X,Y)	A. $E(X^2) - [E(X)]^2$
2 E(Y)	B. $P(Y = y X = x) = P(X = x, Y = y) / P(X = x)$
3 V(X)	C. $P(X = x) = \sum_{y} P(X = x, Y = y)$
4 Corr(X,Y)	D. $\sum_{y} yP(Y = y)$
5 E(X Y=y)	$E. \ V(X) + V(Y) - 2Cov(X,Y)$
6 Conditional pmf of Y X	F. $E[(X - \mu_X)(Y - \mu_Y)]$
7 V(X-Y)	G. $Cov(X,Y)/[SD(X)SD(Y)]$
8 Marginal of X	$H. \sum_{x} xP(X = x \mid Y = y)$
9 V(Y)	I. $E[(Y - \mu_Y)^2]$

A. Suppose that X and Y have a discrete joint distribution for which the joint probability function is defined as follows: f(x,y) = (x + y)/30 for x = 0,1,2 and y = 0,1,2,3. Find the marginal probability mass functions for X and Y, and determine if X and Y are independent.

B. A merchant stocks a certain perishable item. He knows that on any given day he will have a demand for two, three, or four of these items, with probabilities 0.2, 0.3, and 0.5 respectively. He buys the items at a cost of 1 dollar and sells them for 1.20 dollars. Any items left at the end of the day represent a total loss. How many items should he stock to maximize his expected profit?